
Carillion Plc
Carillion Plc
3 Projects, page 1 of 1
assignment_turned_in Project2016 - 2024Partners:WSP UK LIMITED, Mott Macdonald, CIRIA, EDF Energy (United Kingdom), Halcrow Group Ltd +86 partnersWSP UK LIMITED,Mott Macdonald,CIRIA,EDF Energy (United Kingdom),Halcrow Group Ltd,LONDON UNDERGROUND LIMITED,Thales Aerospace,WSP UK LIMITED,COSTAIN LTD,TREL,NPL,WSP Civils,Telespazio Vega,Redbite Solutions,Telespazio Vega,Rolatube Technology Ltd,Heriot-Watt University,Buro Happold Limited,Arup Group Ltd,Buro Happold,BURO HAPPOLD LIMITED,Geothermal International Ltd,AIG Science,CH2M HILL UNITED KINGDOM,Tongji University,Centro Public Transport,Carillion Plc,Cambridgeshire County Council,UCL,National Physical Laboratory NPL,Transport Systems Catapult,Environmental Scientifics Group,UT,Environmental Scientifics Group,CIRIA,National Highways,Future Cities Catapult,Mott Macdonald (United Kingdom),RU,Costain Ltd,ITM,Cambridge Integrated Knowledge Centre,Department for Transport,High Speed Two HS2 Limited,Ove Arup & Partners Ltd,GE Aviation,INF,Rolatube Technology Ltd,Cementation Skanska,Tongji University,University of Cambridge,University of Oxford,Sengenia Ltd,Crossrail Limited,Arup Group,AIG Science,High Speed Two HS2 Ltd,Crossrail Limited,Geothermal International Ltd,Transport Systems Catapult,Mabey Holdings Limited,Future Cities Catapult,Centro Public Transport,Thales UK Limited,AgustaWestland,Heriot-Watt University,Sengenia Ltd,Omnisense Limited,Redbite Solutions,Cambridgeshire County Council,UNIVERSITY OF CAMBRIDGE,ITM Monitoring,EDF Energy Plc (UK),Topcon Great Britain Ltd,McLaren Automotive Ltd,Cementation Skanska Limited,Topcon,Laing O'Rourke,British Energy Generation Ltd,Laing O'Rourke plc,Mabey Holdings Limited,CH2M Hill (United Kingdom),Rutgers State University of New Jersey,TfL,Toshiba Research Europe Ltd,THALES UK LIMITED,McLaren Automotive Ltd,Highways Agency,GE Aviation,Rutgers University,Cargill PlcFunder: UK Research and Innovation Project Code: EP/N021614/1Funder Contribution: 3,163,720 GBPGlobally, national infrastructure is facing significant challenges: - Ageing assets: Much of the UK's existing infrastructure is old and no longer fit for purpose. In its State of the Nation Infrastructure 2014 report the Institution of Civil Engineers stated that none of the sectors analysed were "fit for the future" and only one sector was "adequate for now". The need to future-proof existing and new infrastructure is of paramount importance and has become a constant theme in industry documents, seminars, workshops and discussions. - Increased loading: Existing infrastructure is challenged by the need to increase load and usage - be that number of passengers carried, numbers of vehicles or volume of water used - and the requirement to maintain the existing infrastructure while operating at current capacity. - Changing climate: projections for increasing numbers and severity of extreme weather events mean that our infrastructure will need to be more resilient in the future. These challenges require innovation to address them. However, in the infrastructure and construction industries tight operating margins, industry segmentation and strong emphasis on safety and reliability create barriers to introducing innovation into industry practice. CSIC is an Innovation and Knowledge Centre funded by EPSRC and Innovate UK to help address this market failure, by translating world leading research into industry implementation, working with more than 40 industry partners to develop, trial, provide and deliver high-quality, low cost, accurate sensor technologies and predictive tools which enable new ways of monitoring how infrastructure behaves during construction and asset operation, providing a whole-life approach to achieving sustainability in an integrated way. It provides training and access for industry to source, develop and deliver these new approaches to stimulate business and encourage economic growth, improving the management of the nation's infrastructure and construction industry. Our collaborative approach, bringing together leaders from industry and academia, accelerates the commercial development of emerging technologies, and promotes knowledge transfer and industry implementation to shape the future of infrastructure. Phase 2 funding will enable CSIC to address specific challenges remaining to implementation of smart infrastructure solutions. Over the next five years, to overcome these barriers and create a self-sustaining market in smart infrastructure, CSIC along with an expanded group of industry and academic partners will: - Create the complete, innovative solutions that the sector needs by integrating the components of smart infrastructure into systems approaches, bringing together sensor data and asset management decisions to improve whole life management of assets and city scale infrastructure planning; spin-in technology where necessary, to allow demonstration of smart technology in an integrated manner. - Continue to build industry confidence by working closely with partners to demonstrate and deploy new smart infrastructure solutions on live infrastructure projects. Develop projects on behalf of industry using seed-funds to fund hardware and consumables, and demonstrate capability. - Generate a compelling business case for smart infrastructure solutions together with asset owners and government organisations based on combining smarter information with whole life value models for infrastructure assets. Focus on value-driven messaging around the whole system business case for why smart infrastructure is the future, and will strive to turn today's intangibles into business drivers for the future. - Facilitate the development and expansion of the supply chain through extending our network of partners in new areas, knowledge transfer, smart infrastructure standards and influencing policy.
more_vert assignment_turned_in Project2013 - 2018Partners:Pipeline Industries Guild, NEL Fund Managers, CH2M Hill Incorporated USA, Climate-KIC, Atkins UK +57 partnersPipeline Industries Guild,NEL Fund Managers,CH2M Hill Incorporated USA,Climate-KIC,Atkins UK,NUAG,North East Local Enterprise Partnership,Newcastle University,Birmingham City Council,National Grid PLC,Arup Group Ltd,CH2M Hill Incorporated USA,National Underground Assets Group Ltd,CBI,LEEDS CITY COUNCIL,Cargill Plc,University of Salford,Worcestershire County Council,Climate-KIC,Balfour Beatty (United Kingdom),Newcastle Science Central,ICE,Network Rail Ltd,University of Salford,Newcastle City Council,Worcestershire County Council,CBI,The Institution of Civil Engineers,Malvern Hills District Council,Pipeline Industries Guild (United Kingdom),NEWCASTLE CITY COUNCIL,South East Local Enterprise Partnership,Price Waterhouse Coopers,BALFOUR BEATTY RAIL,Newcastle City Council,Network Rail,UKWIR,Arup Group,Environmental Sustainability KTN,Carillion Plc,Atkins UK,Ove Arup & Partners Ltd,Tipping Point,Halcrow Group Limited,Price Waterhouse Coopers LLP,Newcastle Science Central,Leeds City Council,Malvern Hills District Council,NEL Fund Managers,BIRMINGHAM CITY COUNCIL,Building Research Establishment,BRE Trust,UK Water Industry Research Ltd (UKWIR),Leeds City Council,Birmingham City Council,Tipping Point,Newcastle University,BRE Trust (Building Res Excellence),National Grid plc,BALFOUR BEATTY PLC,Halcrow Group Ltd,Technology Strategy BoardFunder: UK Research and Innovation Project Code: EP/K012398/1Funder Contribution: 3,567,860 GBPOur national infrastructure - the systems of infrastructure networks (e.g. energy, water, transport, waste, ICT) that support services such as healthcare, education, emergency response and thereby ensure our social, economic and environmental wellbeing - faces a multitude of challenges. A growing population, modern economy and proliferation of new technologies have placed increased and new demands on infrastructure services and made infrastructure networks increasingly inter-connected. Meanwhile, investment has not kept up with the pace of change leaving many components at the end of their life. Moreover, global environmental change necessitates reduced greenhouse gas emissions and improved resilience to extreme events, implying major reconfigurations of these infrastructure systems. Addressing these challenges is further complicated by fragmented, often reactive, regulation and governance arrangements. Existing business models are considered by the Treasury Select Committee to provide poor value but few proven alternative models exist for mobilising finance, particularly in the current economic climate. Continued delivery of our civil infrastructure, particularly given current financial constraints, will require innovative and integrated thinking across engineering, economic and social sciences. If the process of addressing these issues is to take place efficiently, whilst also minimising associated risks, it will need to be underpinned by an appropriate multi-disciplinary approach that brings together engineering, economic and social science expertise to understand infrastructure financing, valuation and interdependencies under a range of possible futures. The evidence that must form the basis for such a strategic approach does not yet exist. However, evidence alone will be insufficient, so we therefore propose to establish a Centre of excellence, i-BUILD, that will bring together three UK universities with world-leading track records in engineering, economics and social sciences; a portfolio of pioneering inter-disciplinary research; and the research vision and capacity to deliver a multi-disciplinary analysis of innovative business models around infrastructure interdependencies. While national scale plans, projects and procedures set the wider agenda, it is at the scale of neighbourhoods, towns and cities that infrastructure is most dense and interdependencies between infrastructures, economies and society are most profound - this is where our bid is focussed. Balancing growth across regions and scales is crucial to the success of the national economy. Moreover, the localism agenda is encouraging local agents to develop new infrastructure related business but these are limited by the lack of robust new business models with which to do so at the local and urban scale. These new business models can only arise from a step change in the cost-benefit ratio for infrastructure delivery which we will achieve by: (i) reducing the costs of infrastructure delivery by understanding interdependencies and alternative finance models, (ii) improving valuation of infrastructure benefits by identifying and exploiting the social, environmental and economic opportunities, and, (iii) reconciling national and local priorities. The i-BUILD centre will deliver these advances through development of a new generation of value analysis tools, interdependency models and multi-scale implementation plans. These methods will be tested on integrative case studies that are co-created with an extensive stakeholder group, to provide demonstrations of new methods that will enable a revolution in the business of infrastructure delivery in the UK. Funding for a Centre provides the opportunity to work flexibly with partners in industry, local and national government to address a research challenge of national and international importance, whilst becoming an international landmark programme recognised for novelty, research excellence and impact.
more_vert assignment_turned_in Project2013 - 2015Partners:Lancaster University, Carillion Plc, Cargill Plc, In Touch Ltd, Lancaster University +1 partnersLancaster University,Carillion Plc,Cargill Plc,In Touch Ltd,Lancaster University,Touch TDFunder: UK Research and Innovation Project Code: EP/K012614/1Funder Contribution: 161,633 GBPHelping to address the sustainability agenda through informed personal travel has been an area of intense research activity with many new forms of information collection and dissemination having been investigated. Much less well studied is the problem of maintaining the transport infrastructure in a sustainable fashion. In our work we wish to explore in the wild how new developments in travel information gathering and dissemination can be used to drive more sustainable approaches to maintaining the UK's transport infrastructure. The project builds on successful collaborations established through funded research projects (Our Travel (TSB), Faith (TSB/EPSRC), Smart Streets (TSB)) and looks to test in the wild ideas emerging from new areas of academic research as typified by the RCUK funded Sixth Sense Transport project. Our work builds on two recent research projects, i.e. Our Travel and Sixth Sense. Within the Our Travel project the consortium have shown how crowd-sourced transport information can be integrated with highways maintenance activities to help better coordinate work activities and to ensure timely dissemination of information regarding maintenance activities to travellers. The on-going Sixth Sense Transport project is a multidisciplinary academic research project involving the Universities of Southampton (transport), Edinburgh (design), Salford (psychology) and Bournemouth (tourism) that is looking to encourage travellers to adopt a more sustainable approach to travel. To this end the project is developing applications that allow travellers to see predictions of future travel patterns of other users, enabling them to avoid congestion and make more opportunistic use of travel links, particularly across transport modes and between travellers. For example, the project looks to encourage travellers to identify opportunities for shared travel, convert single-purpose trips into multi-purpose trips, engage in collaborative logistics and shift to mixed-mode transport by providing simple interactive maps that show traces of both past and future travel patterns. Our interest is in exploring whether the idea of using such predictive travel patterns can help provide a more sustainable approach to maintaining the UK's transport infrastructure. At present many highways maintenance activities are driven largely by a need to comply with contractual KPIs (Key Performance Indicators). This tends to lead to an inherently unsustainable "earliest deadline first" approach to scheduling that significantly increases the environmental overhead associated with highways maintenance. Prediction of future travel patterns may help in two distinct ways. Firstly, by enabling highways maintenance engineers to predict future travel patterns they can schedule work in a way that minimises traffic disruption - particularly with respect to journeys that involve multiple transport modes (e.g. driving to the station to catch a train). This can lead to a significant reduction in congestion and associated emissions. Secondly, by predicting future travel patterns of their own maintenance vehicles highways maintenance engineers can maximise the potential for opportunistic improvements to work-flows. For example, it may be possible to identify opportunities for maintenance operatives to opportunistically share tools and materials such as tarmac without the need to return to base between road repairs - reducing transport costs and environmental impact. More generally, in this research we are looking to enable a shift from a reactive, and distinctly inefficient and environmentally costly model of scheduling to a predictive, opportunistic model that looks to minimise the environmental impact of work.
more_vert