
Nederlands Kanker Instituut
Nederlands Kanker Instituut
28 Projects, page 1 of 6
assignment_turned_in ProjectFrom 2025Partners:Nederlands Kanker Instituut, Antoni van Leeuwenhoek Ziekenhuis, Biochemie B8, Erasmus MC, Department of Molecular Genetics, Erasmus MC, Genetica, Nederlands Kanker Instituut, Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, NanoScience - Kavli Institute of Nanoscience Delft, Department of Bionanoscience +1 partnersNederlands Kanker Instituut, Antoni van Leeuwenhoek Ziekenhuis, Biochemie B8,Erasmus MC, Department of Molecular Genetics,Erasmus MC, Genetica,Nederlands Kanker Instituut,Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, NanoScience - Kavli Institute of Nanoscience Delft, Department of Bionanoscience,Nederlands Kanker Instituut, Antoni van Leeuwenhoek ZiekenhuisFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.XL.23.120Damage in the DNA inhibits transcription of genes by RNA polymerase II, which copies the genetic information of DNA into RNA. This impediment of RNA polymerase II results in severe cellular dysfunction and accelerated aging. Through a consortium combining unique complementary knowledge and expertise, we can study for the first time the causes and consequences of DNA damage from the perspective of a single molecule to that of a whole organism. Using this approach, we will study what exactly happens to RNA polymerase when encountering DNA damage, and directly link this to the consequences at the cellular and organism level.
more_vert assignment_turned_in ProjectFrom 2025Partners:Nederlands Kanker Instituut, Antoni van Leeuwenhoek Ziekenhuis, Moleculaire Genetica, Nederlands Kanker InstituutNederlands Kanker Instituut, Antoni van Leeuwenhoek Ziekenhuis, Moleculaire Genetica,Nederlands Kanker InstituutFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: VI.Veni.242.026MYC is a protein involved in regulating genes and is linked to 70% of all tumors. It can reprogram how a cell interprets its DNA, which can lead to cancer. This research focuses on understanding how MYC causes these changes in cells. Using innovative techniques like BANC-seq and CasTuner, the study investigates how the amount of MYC determines the outcomes of this reprogramming. The results will provide fundamental insights into how such proteins reprogram cells and help us better understand how cancer develops, paving the way for new treatment options.
more_vert assignment_turned_in Project2023 - 9999Partners:Nederlands Kanker Instituut, Antoni van Leeuwenhoek Ziekenhuis, Koninklijke Nederlandse Akademie van Wetenschappen, Hubrecht Instituut voor Ontwikkelingsbiologie en Stamcelonderzoek, Genregulatie, Laboratory of pluripotent stem cells in development and disease, Koninklijke Nederlandse Akademie van Wetenschappen, Hubrecht Instituut voor Ontwikkelingsbiologie en Stamcelonderzoek, Genregulatie, Nederlands Kanker Instituut, Koninklijke Nederlandse Akademie van Wetenschappen +2 partnersNederlands Kanker Instituut, Antoni van Leeuwenhoek Ziekenhuis,Koninklijke Nederlandse Akademie van Wetenschappen, Hubrecht Instituut voor Ontwikkelingsbiologie en Stamcelonderzoek, Genregulatie, Laboratory of pluripotent stem cells in development and disease,Koninklijke Nederlandse Akademie van Wetenschappen, Hubrecht Instituut voor Ontwikkelingsbiologie en Stamcelonderzoek, Genregulatie,Nederlands Kanker Instituut,Koninklijke Nederlandse Akademie van Wetenschappen,Nederlands Kanker Instituut, Antoni van Leeuwenhoek Ziekenhuis, Gene Regulation B4,Nederlands Kanker InstituutFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: VI.C.222.049In our bodies genes need to be activated at the right time and the right place. Many of these genes are activated by pieces of DNA that are located far away in the genome. The folding of our genome plays an important role in the correct regulation of these genes. We will investigate which factors are important in this process. This will lead to a better understanding how genes are regulated during embryonal development and what happens in developmental disorders.
more_vert assignment_turned_in Project2023 - 9999Partners:Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Swammerdam Institute for Life Sciences (SILS), Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Swammerdam Institute for Life Sciences (SILS), Cell and Systems Biology, Molecular Cytology, Nederlands Kanker Instituut, Antoni van Leeuwenhoek Ziekenhuis, Koninklijke Nederlandse Akademie van Wetenschappen, Universiteit van Amsterdam +10 partnersUniversiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Swammerdam Institute for Life Sciences (SILS),Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Swammerdam Institute for Life Sciences (SILS), Cell and Systems Biology, Molecular Cytology,Nederlands Kanker Instituut, Antoni van Leeuwenhoek Ziekenhuis,Koninklijke Nederlandse Akademie van Wetenschappen,Universiteit van Amsterdam,Hubrecht Institute,Hubrecht Institute, Molecular Cardiology,Koninklijke Nederlandse Akademie van Wetenschappen, Hubrecht Instituut voor Ontwikkelingsbiologie en Stamcelonderzoek, Genregulatie,Nederlands Kanker Instituut,Radboud Universiteit Nijmegen,Nederlands Kanker Instituut,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Institute for Molecular Life Sciences (RIMLS),Radboud Universiteit Nijmegen,Universiteit van AmsterdamFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.XL21.XL21.100The early mammalian epiblast consists of pluripotent cells that differentiate into three germ layers—ectoderm, mesoderm, and endoderm—during gastrulation. The mammalian epiblast is heterogeneous, with stochastic transcriptomic and epigenomic differences influencing their response to signals. Understanding how such stochastic cells make robust fate decisions is a major challenge requiring accessible models, live-cell imaging, single-cell multi-omics, and computational modeling. By combining “gastruloids,”, a mouse embryo-like structure generated from stem cells, with these technologies, our multidisciplinary team will define cellular states and trajectories to advance knowledge of lineage specification and regenerative medicine.
more_vert assignment_turned_in Project2020 - 2023Partners:Nederlands Kanker Instituut, Antoni van Leeuwenhoek Ziekenhuis, Moleculaire Genetica, Nederlands Kanker Instituut, Nederlands Kanker InstituutNederlands Kanker Instituut, Antoni van Leeuwenhoek Ziekenhuis, Moleculaire Genetica,Nederlands Kanker Instituut,Nederlands Kanker InstituutFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.KLEIN.263Stem cells are vital for our health. In the intestine, they maintain the organ, and allow it to heal after damage. Changes in these cells in the intestine are known to cause diseases including cancer and ulcerative colitis. In this proposal we will study these cells in order to understand how they make the proteins they need, and how this process is hijacked by disease. In doing this we can potentially identify ways to modify this, improving the health of the organ.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right