Powered by OpenAIRE graph
Found an issue? Give us feedback

HUTCH

HUTCHINSON SA
Country: France
16 Projects, page 1 of 4
  • Funder: European Commission Project Code: 653514
    Overall Budget: 8,002,540 EURFunder Contribution: 8,002,540 EUR

    Innovation in the automotive industry is of pivotal importance for European´s prosperity. OSEM-EV will provide solutions for better autonomy and predictable range to address today´s car buyers concern about electro mobility. Just increasing the battery capacity is not a viable option because the expectation is to have a familiar level of comfort and safe, eco and human oriented mobility at affordable costs. OSEM-EV will translate the foreseen project innovations into a customer value proposition. The highest priority is improved mileage and predictable range without adding further cost and weight. The negative impact of high and low ambient temperatures will be limited. Cars autonomy will be increased due to a reduction of at least 50% of energy used for passenger comfort and at least 30% for component cooling in extreme conditions compared to current FEVs. The consortium will focus on thermal and coupled electro-thermal energy substitution and harvesting and smart energy usage for cooling and heating of the passenger compartment and in-car infrastructure. OSEM-EV goes for novel electro-thermal architectures and control algorithms including thermal insulation, thermal storage, innovative heating and cooling approaches applied to the powertrain (battery, inverter and motor), battery life duration enhancement as a side effect of thermal management, electronic control of energy and power flows, energy efficiency of electrified accessories, energy substitution and harvesting functions. The consortium will take a radical approach, which does not only rely on improving the efficiency of subsystems but also focuses on their interoperability. By creating an electro-thermal network, most of the energy shall be reutilized, no matter if stored in mechanical, electrical or thermal form.

    more_vert
  • Funder: European Commission Project Code: 312314
    more_vert
  • Funder: European Commission Project Code: 309143
    more_vert
  • Funder: European Commission Project Code: 769902
    Overall Budget: 8,958,010 EURFunder Contribution: 8,958,010 EUR

    The DOMUS project aims to change radically the way in which vehicle passenger compartments and their respective comfort control systems are designed so as to optimise energy use and efficiency while keeping user comfort and safety needs central. Although a more thorough understanding of thermal comfort over recent years has led to significant increases in energy efficiency through better insulation and natural ventilation, substantial room for improvement still exists. With Electric Vehicles (EVs) in particular, which are emerging as the most sustainable option for both satisfying the future mobility needs in Europe and reducing the impact on the environment, inefficiencies must be minimized due to their detrimental effect on the range. Starting with activities to gain a better understanding of comfort, combined with the development of numerical models which represent both the thermal and acoustic characteristics of the passenger compartment, DOMUS aims to create a validated framework for virtual assessment and optimization of the energy used. In parallel, innovative solutions for glazing, seats, insulation and radiant panels, will be developed along with controllers to optimize their performance individually and when operating in combination, the optimal configuration of which will be derived through numerical simulation. The aim is that the combined approach of innovating at a component level together with optimising the overall configuration will deliver at least the targeted 25% improvement in EV range without compromising passenger comfort and safety. Furthermore, the project will demonstrate the key elements of the new approach in a real prototype vehicle. As such DOMUS aims to create a revolutionary approach to the design of vehicles from a user-centric perspective for optimal efficiency, the application of which will be key to increasing range and hence customer acceptance and market penetration of EVs in Europe and around the world in the coming years.

    more_vert
  • Funder: European Commission Project Code: 608770
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.