
University of Western Australia
University of Western Australia
35 Projects, page 1 of 7
assignment_turned_in Project2020 - 2024Partners:PHE, DSTL, Robert Bosch (Germany), Milton Keynes Uni Hospital NHS Fdn Trust, ATACC group +75 partnersPHE,DSTL,Robert Bosch (Germany),Milton Keynes Uni Hospital NHS Fdn Trust,ATACC group,The Shadow Robot Company,CLAWAR Ltd,CLAWAR Ltd,Defence Science & Tech Lab DSTL,Sheffield Childrens NHS Foundation Trust,ATACC group,Milton Keynes Hospital,Welsh Ambulance Services NHS Trust,UWA,RAC Foundation for Motoring,National Metals Technology Centre,IAM RoadSmart,Thales Aerospace,Lero (The Irish Software Research Ctr),Connected Places Catapult,Kuka Ltd,KUKA Robotics UK Limited,GoSouthCoast,Chartered Inst of Ergo & Human Factors,AMRC,Health & Social Care Information Centre,National Institute of Informatics (NII),Lancashire and South Cumbira NHS Trust,University of York,Cyberselves Universal Limited,UNIVERSITY OF CENTRAL FLORIDA,Sheffield Childrens NHS Foundation Trust,University of York,Lancashire & South Cumbria NHS Fdn Trust,KUKA Robotics UK Limited,Resilient Cyber Security Solutions,THALES UK LIMITED,ADVANCED MANUFACTURING RESEARCH CENTRE,Ocado Technology,Consequential Robotics (to be replaced),Connected Places Catapult,Autonomous Drivers Alliance,Thales UK Limited,Robert Bosch GmbH,Lancashire Teaching Hospitals NHS Trust,Shadow Robot Company Ltd,CRODA EUROPE LTD,Lero,UCF,Resilient Cyber Security Solutions,Bradford Teaching Hospitals,Defence Science & Tech Lab DSTL,NHS Digital (previously HSCIC),Lancashire Teaching Hospitals NHS Trust,Cyberselves Universal Limited,Consequential Robotics Ltd,Croda (United Kingdom),Public Health England,Kompai Robotics,GoSouthCoast,RAC Foundation for Motoring,Bristol Robotics Laboratory (BRL),BRL,ClearSy,CRODA EUROPE LIMITED,Kompai Robotics,National Institute of Informatics,Welsh Ambulance Services NHS Trust,Autonomous Drivers Alliance,TechnipFMC (International),Ocado Technology,University of Western Australia,PUBLIC HEALTH ENGLAND,DHSC,IAM RoadSmart,ClearSy,Bradford Teaching Hosp NHS Found Trust,Bradford Teaching Hospitals,National Institute of Informatics,TechnipFMC (International)Funder: UK Research and Innovation Project Code: EP/V026747/1Funder Contribution: 3,063,680 GBPImagine a future where autonomous systems are widely available to improve our lives. In this future, autonomous robots unobtrusively maintain the infrastructure of our cities, and support people in living fulfilled independent lives. In this future, autonomous software reliably diagnoses disease at early stages, and dependably manages our road traffic to maximise flow and minimise environmental impact. Before this vision becomes reality, several major limitations of current autonomous systems need to be addressed. Key among these limitations is their reduced resilience: today's autonomous systems cannot avoid, withstand, recover from, adapt, and evolve to handle the uncertainty, change, faults, failure, adversity, and other disruptions present in such applications. Recent and forthcoming technological advances will provide autonomous systems with many of the sensors, actuators and other functional building blocks required to achieve the desired resilience levels, but this is not enough. To be resilient and trustworthy in these important applications, future autonomous systems will also need to use these building blocks effectively, so that they achieve complex technical requirements without violating our social, legal, ethical, empathy and cultural (SLEEC) rules and norms. Additionally, they will need to provide us with compelling evidence that the decisions and actions supporting their resilience satisfy both technical and SLEEC-compliance goals. To address these challenging needs, our project will develop a comprehensive toolbox of mathematically based notations and models, SLEEC-compliant resilience-enhancing methods, and systematic approaches for developing, deploying, optimising, and assuring highly resilient autonomous systems and systems of systems. To this end, we will capture the multidisciplinary nature of the social and technical aspects of the environment in which autonomous systems operate - and of the systems themselves - via mathematical models. For that, we have a team of Computer Scientists, Engineers, Psychologists, Philosophers, Lawyers, and Mathematicians, with an extensive track record of delivering research in all areas of the project. Working with such a mathematical model, autonomous systems will determine which resilience- enhancing actions are feasible, meet technical requirements, and are compliant with the relevant SLEEC rules and norms. Like humans, our autonomous systems will be able to reduce uncertainty, and to predict, detect and respond to change, faults, failures and adversity, proactively and efficiently. Like humans, if needed, our autonomous systems will share knowledge and services with humans and other autonomous agents. Like humans, if needed, our autonomous systems will cooperate with one another and with humans, and will proactively seek assistance from experts. Our work will deliver a step change in developing resilient autonomous systems and systems of systems. Developers will have notations and guidance to specify the socio-technical norms and rules applicable to the operational context of their autonomous systems, and techniques to design resilient autonomous systems that are trustworthy and compliant with these norms and rules. Additionally, developers will have guidance to build autonomous systems that can tolerate disruption, making the system usable in a larger set of circumstances. Finally, they will have techniques to develop resilient autonomous systems that can share information and services with peer systems and humans, and methods for providing evidence of the resilience of their systems. In such a context, autonomous systems and systems of systems will be highly resilient and trustworthy.
more_vert assignment_turned_in Project2019 - 2027Partners:Wood Group, OFFSHORE RENEWABLE ENERGY CATAPULT, Vattenfall Wind Power Ltd, Sennen, James Fisher Marine Services +72 partnersWood Group,OFFSHORE RENEWABLE ENERGY CATAPULT,Vattenfall Wind Power Ltd,Sennen,James Fisher Marine Services,RenewableUK,Plymouth University,Nordex SE Hamburg,Ramboll Wind,Siemens AG,MET OFFICE,Atlantis Operations (UK) Ltd,Marine Scotland Science,RenewableUK,UNIVERSITY OF PLYMOUTH,Babcock International Group Plc (UK),DNV GL (UK),Energy Technology Partnership,Vestas (Denmark),Atlantis Operations (UK) Ltd,Frazer-Nash Consultancy Ltd,Sennen,University of Western Australia,Tufts University,FHG,BVG Associates Ltd,BVG Associates Ltd,Fugro GEOS Ltd,E.ON Climate & Renewables GmbH,Energy Technology Partnership,Met Office,Wood Group,DNV GL (UK),Insight Analytics Solutions,EDGE Solutions Limited,Adwen Technology,Atkins (United Kingdom),Vattenfall Wind Power Ltd,Scottish Power (United Kingdom),Nova Innovation,UWA,SSE Energy Supply Limited UK,Siemens AG (International),James Fisher Marine Services,Nova Innovation Ltd,Fugro (UK),EireComposites Teo,SCOTTISH POWER UK PLC,Atkins Ltd,Subsea UK,Scottish Power (United Kingdom),EireComposites Teo,University of Strathclyde,Lloyd's Register Foundation,EDGE Solutions Limited,University of Strathclyde,Adwen Technology,Orsted (UK),RES,Tufts University,Lloyd's Register EMEA,Ramboll Wind,E.ON Climate & Renewables GmbH,Met Office,Narec Capital Limited,SSE Energy Supply Limited UK,Subsea UK,Fraunhofer,Vestas Wind Systems A/S,MSS,Babcock International Group Plc,Renewable Energy Systems Ltd,Orsted,Lloyd's Register Foundation,Atkins Ltd,Offshore Renewable Energy Catapult,Insight Analytics SolutionsFunder: UK Research and Innovation Project Code: EP/S023801/1Funder Contribution: 6,732,970 GBPThis proposal is for a new EPSRC Centre for Doctoral Training in Wind and Marine Energy Systems and Structures (CDT-WAMSS) which joins together two successful EPSRC CDTs, their industrial partners and strong track records of training more than 130 researchers to date in offshore renewable energy (ORE). The new CDT will create a comprehensive, world-leading centre covering all aspects of wind and marine renewable energy, both above and below the water. It will produce highly skilled industry-ready engineers with multidisciplinary expertise, deep specialist knowledge and a broad understanding of pertinent whole-energy systems. Our graduates will be future leaders in industry and academia world-wide, driving development of the ORE sector, helping to deliver the Government's carbon reduction targets for 2050 and ensuring that the UK remains at the forefront of this vitally important sector. In order to prepare students for the sector in which they will work, CDT-WAMSS will look to the future and focus on areas that will be relevant from 2023 onwards, which are not necessarily the issues of the past and present. For this reason, the scope of CDT-WAMSS will, in addition to in-stilling a solid understanding of wind and marine energy technologies and engineering, have a particular emphasis on: safety and safe systems, emerging advanced power and control technologies, floating substructures, novel foundation and anchoring systems, materials and structural integrity, remote monitoring and inspection including autonomous intervention, all within a cost competitive and environmentally sensitive context. The proposed new EPSRC CDT in Wind and Marine Energy Systems and Structures will provide an unrivalled Offshore Renewable Energy training environment supporting 70 students over five cohorts on a four-year doctorate, with a critical mass of over 100 academic supervisors of internationally recognised research excellence in ORE. The distinct and flexible cohort approach to training, with professional engineering peer-to-peer learning both within and across cohorts, will provide students with opportunities to benefit from such support throughout their doctorate, not just in the first year. An exceptionally strong industrial participation through funding a large number of studentships and provision of advice and contributions to the training programme will ensure that the training and research is relevant and will have a direct impact on the delivery of the UK's carbon reduction targets, allowing the country to retain its world-leading position in this enormously exciting and important sector.
more_vert assignment_turned_in Project2022 - 2024Partners:University of Western Australia, University of Southampton, ASTRAZENECA UK LIMITED, AstraZeneca (Global), Durham UniversityUniversity of Western Australia,University of Southampton,ASTRAZENECA UK LIMITED,AstraZeneca (Global),Durham UniversityFunder: UK Research and Innovation Project Code: EP/V000217/2Funder Contribution: 128,700 GBPPolymorphism is the ability of a compound to crystallise in more than one crystal structure. Since most drug compounds are crystalline, discovery and control of polymorphism is a key aspect of drug development and manufacturing. It is well known in this context that metastable polymorphs are usually discovered first and that stable polymorphs may make an appearance eventually (with time and money). Often, this appearance is linked to an increase in the purity of the active pharmaceutical ingredient (API). Whilst this is general knowledge shared by crystallisation scientists, we currently have a very limited understanding of the fundamental reasons behind it. In the current project we seek to utilise the above observation to our advantage. We have some experimental and computational evidence that impurities are in fact changing the thermodynamic stability of solid forms through insertion in their crystal lattices (formation of solid solutions). We seek to first test and confirm our hypothesis to then exploit this concept in order to access elusive polymorphs experimentally, be able to produce them reliably and exploit their structure and properties. Developing a deeper understanding of the impact of impurities in the formation of solid solutions and thus in the realisation of solid forms will have a significant impact in the development of pharmaceuticals, a multi-billion pounds business of great importance to the UK economy.
more_vert assignment_turned_in Project2024 - 2027Partners:University of Sheffield, University of Western Australia, Lund University, UK CENTRE FOR ECOLOGY & HYDROLOGYUniversity of Sheffield,University of Western Australia,Lund University,UK CENTRE FOR ECOLOGY & HYDROLOGYFunder: UK Research and Innovation Project Code: MR/Y034252/1Funder Contribution: 595,590 GBPFood security is one of the most pressing challenges that humans will face this century. A growing population, shifting dietary habits and a changing climate are placing unprecedented pressure on crop production. Future crops must therefore be resilient to climate change and (a)biotic stresses. Whilst modern crop varieties have been bred for high yields, this has led to a reliance on a diminished number of crop species and varieties, resulting in a vulnerability to pests and disease and a changing climate. Leveraging the genetic diversity that exists across different crop cultivars and landraces offers an opportunity to sustainably increase food production and close yield gaps by ensuring that crops are optimised to current and future environments. However, identifying the molecular mechanisms that underpin crop physiological responses to environmental stress is complex. Crops express phenotypic traits according to interactions between their genomes, the environment and how they are managed. Identifying how a given crop cultivar will respond to different environmental conditions is key to guiding breeding programmes. Phenotyping studies are underpinned by testing how crop genomes respond to environmental conditions, and how these conditions affects overall yields and the resilience of the crops to stress. However, this is resource intensive and limited in scope by the time and environment that the crops are grown under. There is a critical need to harness novel remote sensing techniques and state-of-the-art modelling approaches to model how genetically-regulated crop biochemical, structural and physiological traits affect yields, under different environmental scenarios. Closing this genotype to field-scale gap requires robust scaling methodologies that can be deployed at high throughputs. Leveraging our understanding of genetic controls on physiological traits and fluxes will enhance our ability to predict how crop genomes will respond under different environmental conditions.
more_vert assignment_turned_in Project2023 - 2027Partners:National Composites Centre, OFFSHORE RENEWABLE ENERGY CATAPULT, Ocean University of China, Energy Systems Catapult, British Energy Generation Ltd +48 partnersNational Composites Centre,OFFSHORE RENEWABLE ENERGY CATAPULT,Ocean University of China,Energy Systems Catapult,British Energy Generation Ltd,Ocean University of China,Fred. Olsen Seawind Ltd.,Marine Scotland Science,Marine Power Systems Ltd,Aura Innovation,Ove Arup & Partners Ltd,EDF Energy Plc (UK),Renewables Consulting Group,Gazelle Wind Power,Siemens Gamesa Renewable Energy,Offshore Wind Consultants Limited (UK),Carbon Trust,Aviva Plc,Arup Group,DEFRA,Eleven Integration,University of Bristol,Pacific Ocean Energy Trust,Centre for Environment, Fisheries and Aquaculture Science,UNIVERSITY OF PLYMOUTH,BP Exploration Operating Company Ltd,University of Maine,UCC,JNCC (Joint Nature Conserv Committee),The Crown Estate,Marine Alliance for Sci & Tech (MASTS),BP (UK),RenewableUK,CEFAS,Marine Energy Wales,Narec Capital Limited,Vercity,University of Western Australia,Marine Management Organisation,European Marine Energy Centre Ltd (EMEC),Ocean Winds UK Ltd,ThakeConsult,Celtic Sea Power,France Energies Marine,UK Marine Energy Council,Pacific Northwest National Laboratory,Pacific Marine Energy Centre,GE Grid Solutions (UK) Ltd,Orsted,DNV Services UK Limited,PA Consulting Group,Catapult Offshore Renewable Energy,Wave Energy ScotlandFunder: UK Research and Innovation Project Code: EP/Y016297/1Funder Contribution: 7,965,320 GBPThe UK is leading the development and installation of offshore renewable energy technologies. With over 13GW of installed offshore wind capacity and another 3GW under construction, two operational and one awarded floating offshore demonstration projects as well as Contracts for Difference awards for four tidal energy projects, offshore renewable energy will provide the backbone of the Net Zero energy system, giving energy security, green growth and jobs in the UK. The revised UK targets that underpin the Energy Security Strategy seek to grow offshore wind capacity to 50 GW, with up to 5 GW floating offshore wind by 2030. Further acceleration is envisaged beyond 2030 with targets of around 150 GW anticipated for 2050. To achieve these levels of deployment, ORE developments need to move beyond current sites to more challenging locations in deeper water, further from shore, while the increasing pace of deployment introduces major challenges in consenting, manufacture and installation. These are ambitious targets that will require strategic innovation and research to achieve the necessary technology acceleration while ensuring environmental sustainability and societal acceptance. The role of the Supergen ORE Hub 2023 builds on the academic and scientific networks, traction with industry and policymakers and the reputation for research leadership established in the Supergen ORE Hub 2018. The new hub will utilise existing and planned research outcomes to accelerate the technology development, collaboration and industry uptake for commercial ORE developments. The Supergen ORE Hub strategy will focus on delivering impact and knowledge transfer, underpinned by excellent research, for the benefit of the wider sector, providing research and development for the economic and social benefit of the UK. Four mechanisms for leverage are envisaged to accelerate the ORE expansion: Streamlining ORE projects, by accelerating planning, consenting and build out timescales; upscaling the ORE workforce, increasing the scale and efficiency of ORE devices and system; enhanced competitiveness, maximising ORE local content and ORE economic viability in the energy portfolio; whilst ensuring sustainability, yielding positive environmental and social benefits from ORE. The research programme is built around five strategic workstreams, i) ORE expansion - policy and scenarios , ii) Data for ORE design and decision-making, iii) ORE modelling, iv) ORE design methods and v) Future ORE systems and concepts, which will be delivered through a combination of core research to tackle sector wide challenges in a holistic and synergistic manner, strategic projects to address emerging sector challenges and flexible funding to deliver targeted projects addressing focussed opportunities. Supergen Representative Systems will be established as a vehicle for academic and industry community engagement to provide comparative reference cases for assessing applicability of modelling tools and approaches, emerging technology and data processing techniques. The Supergen ORE Hub outputs, research findings and sector progress will be communicated through directed networking, engagement and dissemination activities for the range of academic, industry and policy and governmental stakeholders, as well as the wider public. Industry leverage will be achieved through new co-funding mechanisms, including industry-funded flexible funding calls, direct investment into research activities and the industry-funded secondment of researchers, with >53% industry plus >23% HEI leverage on the EPSRC investment at proposal stage. The Hub will continue and expand its role in developing and sustaining the pipeline of talent flowing into research and industry by integrating its ECR programme with Early Career Industrialists and by enhancing its programme of EDI activities to help deliver greater diversity within the sector and to promote ORE as a rewarding and accessible career for all.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right