Powered by OpenAIRE graph
Found an issue? Give us feedback

B Braun Medical Ltd

B Braun Medical Ltd

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/X031470/1
    Funder Contribution: 568,024 GBP

    We are increasingly dependent on complex "smart" systems: cities, houses, vehicles, electricity grids and a myriad of connected 'things' gathering information and performing automated decision-making with or without a human in the loop. This is in part possible because of technological advances in sensing, actuation, computer hardware, networking and communication, which enable the harnessing, processing and analysis of vast volumes of data. Major advances in Automatic Control Engineering have provided the underpinning theory, methodology and practice needed to design and implement highly complex control and decision-making systems. Automatic control engineering continues to play a vital role in realising the government's long-term industrial strategy of raising productivity and earning power within the UK. Specifically, automatic control is a key enabling technology for all four major societal challenge themes identified in the 2017 UK Industrial Strategy: AI and Data, Clean Growth, Future Mobility and Aging Society and the specific challenge areas within each theme. Automatic control not only dramatically improves the productivity, efficiency, reliability and safety of a wide range of processes across all sectors, but also provides fundamental theory, methodologies and tools to further the understanding and enable discovery in other disciplines such as biology, medicine and social sciences. Whilst the UK led the First Industrial Revolution through the adoption of new technologies, including automation and control, today it lags behind its international competitors. This is evidenced in part by the slow productivity growth over the past decade, which is in sharp contrast to other economic indicators. It is argued that if the UK does not make a concerted effort to transition towards automation, it will miss a pivotal opportunity for growth, estimated to be worth more than £200 billion to the UK economy by 2030. For the UK to become a global leader in intelligent automation and leapfrog international competitors, it is vital that it consolidates its research leadership in automatic control engineering. The UK has a strong control engineering community of well over 1000 active researchers, and engineering practitioners spanning all career stages, which are represented at an international level by the UK Automatic Control Council (UKACC), the United Kingdom's National Member Organisation (NMO) of the International Federation of Automatic Control (IFAC), acting as an effective link between the UK and the international control communities. At the time of dramatic advances in automation, AI, sensing and computation technologies, in order to engage effectively with the UK Grand Challenge research agenda, avoid fragmentation of effort and to ensure control engineers are engaged from the outset with end-users or initiatives, there is a need for the UK control community to connect effectively with other academic and industry stakeholders, to develop a common research vision and strategy and to start addressing these challenges through ambitious pilot studies, paving the way for full-scale, high-impact grant proposals, novel groundbreaking research and knowledge transfer projects. The Automatic Control Engineering Network aims to drive forward the UK's research and international leadership in next-generation automation and control, by bringing together and connecting the country's expertise in automation, the internet-of-things, cybersecurity, machine learning and robotics, with industry stakeholders and the wider research communities working towards addressing the same pressing societal challenges. Through the creation of a Virtual Centre of Excellence in Automation and Control, the Network will ensure that the coordination of research efforts, industry engagement, training activities and resource sharing needed to address Grand Challenges, will continue beyond the end of the funding period.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S021035/1
    Funder Contribution: 208,558 GBP

    Conditions such as long-gap oesophageal atresia (LGOA) and short bowel syndrome (SBS) are two examples of chronic paediatric cases of gastrointestinal tissue reconstruction where up to two thirds of the oesophagus and bowel, respectively, may be missing. These are among the most complex and devastating paediatric anomalies that have a life-long debilitating effect on patients. Their current treatments are not widely available, are complex, primitive, long-term, and have disputed outcome quality. Families and surgeons have long sought an effective treatment to improve these patients' quality of life. The proposed project aims to initiate an ambitious research agenda for a novel technology for the repair and reconstruction of soft tubular tissues inside the body using robotic and tissue regeneration principles. The underlying technology unifies the fields of tissue engineering, surgery and medical implants into a new concept of 'robotic implants'. The proposed robotic implants are one-size-fits-all linings for tubular tissues that enable autonomous tissue-responsive mechanical interaction with tissues to induce their growth. Based on evidence from cell biology studies and clinical practice showing how tissues respond to mechanical stimulation in vivo, the proposed robotic implant applies gentle force directly to tissues to induce growth through cell proliferation. Thus, these robotic implants deliver controlled, long-term, customisable and optimal reconstructive therapy for tissues in an unprecedented way. The proposed technology has the potential to restore patients' mobility and social activity, as well as reduce hospitalisation and post-surgery complications, treatment and costs. This proposal has a pioneering focus: to develop the design, fabrication and control of robotic implants that can physically and physiologically adapt to the changing properties of tissues and stimulate their growth. These robotic implants will consist of fundamental, compact and functional elastomeric strands that can be assembled into an architecture that can elongate with the growing tissue and apply controlled, directional mechanical stimulation to the tissue. This project is the basis of an exciting interdisciplinary research framework that will allow communities of surgeons, biologists, tissue engineers and tissue mechanics researchers to investigate basic mechanisms of tissue growth and understand the relationships among tissue strain, tissue regeneration and inflammatory responses. In particular, the technology to be developed in this project will be a precursor clinical device for LGOA and SBS. This project also launches an investigation into soft robots that physically adapt and perform inside the body, which is imperative for tissue regeneration and growth as well as for wearable technologies that need to adapt to children's developmental stages.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.