Powered by OpenAIRE graph
Found an issue? Give us feedback

UK Water Industry Research

UK Water Industry Research

48 Projects, page 1 of 10
  • Funder: UK Research and Innovation Project Code: EP/G029946/1
    Funder Contribution: 904,117 GBP

    In the developed world most people are able to take the supply of safe clean drinking water for granted, most of the time. However water quality failures do occur and there are associated health risks. The analysis of water samples, taken at the customers tap by the UK Water Industry to meet regulatory requirements, has shown that for three consecutive years approximately 1 in every 200 samples failed to meet the standards for coliforms, an indicator of faecal contamination. The few epidemiologic studies in the area confirm that there is a problem and that it is related to the pipe infrastructure. This pipe infrastructure, used to deliver this basic human resource, is an extremely complicated mix of materials, pipe sizes and structures and appurtenances that are connected in a network, usually in loops, developed in a piecemeal manner over considerable time. This infrastructure is integral to our towns and cities and widespread replacement is unfeasible due to the associated costs and disruption. Whi1e there is existing knowledge and tools for understanding and making some predictions of the structural performance of these assets, the knowledge and applicable understanding of their water quality related performance is extremely poor.This system of buried infrastructure acts as a dynamic physical, microbiological and chemical reactor, with high surface area and with highly variable residence times. As a consequence there are a number of major and interacting physical and bio-chemical processes that degrade the quality of drinking water as it is transported. The situation is further complicated by the unknown, but deteriorating, internal condition of the infrastructure. This Challenging Engineering vision will enable the applicant to establish a world leading multidisciplinary team to derive new knowledge of the physical bio-chemical reactions and interactions occurring within water distribution systems, dominated by the aging infrastructure. The team will integrate across engineering and microbiological, chemical and computer science. Extensive use will be made of the latest instrumentation and measurement techniques from the different disciplines, applied to experimental studies on the internationally unique, 600m long temperature controlled pipe test loop facility at the University of Sheffield and ambitious live field trials with UK water companies (both areas of particular expertise of the applicant). The new understanding and knowledge gained will be applied to develop a suite of analysis and predictive tools to drive a paradigm shift in the way in which water distribution systems are operated, managed, rehabilitated and maintained for water quality with a move towards proactive management operating in near real time.The project is extremely ambitious, but presents the opportunity for the UK to establish an area of international expertise and to lead the world in an expanding research area of public interest and significance. The most apparent output will be superior water quality at least cost, consistent with the demands of an increasingly well informed society, leading to enhanced public health and well being. In the longer term, the multidisciplinary team will evolve by seeking to further develop the multidisciplinary approach for the even more complex environments of the complete urban water cycle and seek to stimulate further change for integrated, holistic and sustainable management across the cycle.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/K015710/1
    Funder Contribution: 61,555 GBP

    This project will bring together an interdisciplinary team of experts from across academic, policy and stakeholder organisations in order to prioritise and plan a response to the pressing science needs associated with resource recovery from waste. Specifically, the project will explore nutrient recovery from excessive aquatic plant and algal biomass production in nutrient enriched waters (e.g. ponds, constructed farm wetlands, sustainable urban drainage systems and natural waterbodies) and, crucially, will integrate economic, social, environmental and health-related dimensions that cut across traditional academic disciplines. Thus, the overall aim of this project is to facilitate the exchange of knowledge across the disciplinary boundaries of biology, geography, soil and water science, microbiology, human behaviour, risk perception, waste management, economics and catchment management. In turn, we will develop a comprehensive, holistic and targeted programme of research to 'close the loop' on nutrient transfer from land to water. This will be underpinned by understanding and quantifying the risks, opportunities and multiple benefits of recycling excessive aquatic plant and algal biomass back to agricultural land. The project will therefore contribute to a paradigm shift in current conceptualisation of 'waste' management to redress the current imbalance of focus on economic benefits of recovering resources from waste. In a wider context, effective and sustainable waste management must take account of the often unquantified and uncertain trade-offs for managing wastes across the environment. For example, recovering nutrients from aquatic plant and algal biomass makes economic sense because fertiliser costs are soaring due to shortages in mineral supply; however, this is only one part of a complex socio-economic-ecological system. We need to couple economics with the safeguarding of human health and protection of key ecosystem services, such as the provision of clean and safe recreational and drinking water, and appreciate the social and political barriers that may hinder or promote efficient nutrient recovery from this 'waste' by-product. While we know that anthropogenic inputs of nutrients to aquatic systems can be assimilated in aquatic biomass we have little knowledge on how pathogens and toxins may be recycled through agroecosystems following reapplication of this biomass to land, and poor understanding of nitrogen and phosphorus release rates from non-composted and composted biomass. Furthermore, the potential role for aquatic plant and algal biomass to be made into biochar (charcoal) as a novel approach to re-cycle nutrients and store carbon in soil (to offset emissions of carbon dioxide) is another dimension of resource recovery from waste by-products that might deliver multiple benefits and ecosystem services for wider society. There are a number of additional policy related dimensions to debate including whether there is an issue surrounding the classification of recycled biomass as non-waste in terms of regulation and licensing. Our team is well equipped with the expertise to develop core work-packages needed for a well balanced research agenda in recycling biomass to agricultural land. The project team are therefore tasked with framing some important emerging questions that will need innovative science and integrated solutions for 2020 and beyond. By pooling the cross-disciplinary expertise assembled in this catalyst grant we will identify where improvements in fundamental understanding are necessary to deliver step changes in 'waste' management for environmental benefits and help refine regulatory policy and practice to support this.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P001564/1
    Funder Contribution: 1,196,630 GBP

    This National Facility for Experimental Biology and Engineering at the Pilot Scale aims to fulfill a strategically and critically important research infrastructure gap that prevents the sustainable provision of clean water for all. Our current decentralized wastewater treatment model needs replacing with those that generate energy from waste and recover resources such as nutrients. Wastewater treatment alone accounts for up to 1.0% of total UK and 1.3% of US electricity. It is both capitally and operationally expensive, for which the customer ultimately pays. In the next century the global water industry must transition to novel low carbon low energy technologies that will recover value from wastewater while cleaning it to a high standard. The rigorous, replicated large-scale experimentation vital to meeting this goal is risky, costly and a significant barrier to innovation. This shared Facility will allow multiple international and national researchers to conduct large-scale experimental investigation of water engineering innovations that are scientifically rigorous and industrially credible. It will set a new global standard for wastewater research and place the UK as an international centre for innovation in wastewater treatment. Most innovations die on the academic lab benches and are not effectively translated into engineering reality. This is because lab-scale innovations lack credibility with Industry practitioners. Most large-scale pilot studies are un-replicated, lack control and thus the rigor and prestige of the lab. The skepticism of practitioners is well founded. The scale-up of even relatively simple physical-chemical and single species reactors is complex and challenging. In open biological wastewater treatment systems, the composition and dynamics of the quintillion (billion billion billion) bacteria at the real larger scale differ profoundly from the thousand billion bacteria we see at the bench scale. This National Facility will consist of replicated transportable custom-built modular wastewater treatment plants at 1-12 m^3 scale that includes conventional (activated sludge and trickling filters), new energy generating technologies (microbial electrochemical fuel cells and anaerobic reactors), and wetlands/lagoons that can be used to treat polluted run-off water in rural and city places (e.g. Sustainable Urban Drainage Systems). These resources will help to reduce barriers to innovation by allowing the Water Industry and the next generation of water engineers and managers to accelerate the translation of innovations from research into the real world for the benefit of the economy, the customer and the environment we rely upon.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I025782/1
    Funder Contribution: 1,114,420 GBP

    The vision of this research is to achieve a chemical safe world where the benefits of modern products and processes can be enjoyed by all without undue detriment to the planetary ecosystem on which all life depends. It aims to improve our understanding and prediction of a key uncertainty (i.e. microbial biotransformation) that underpins ways in which society can reduce the risks posed by potentially hazardous chemicals to environmental and human health. Such chemicals are manufactured and present in many everyday products that benefit the health and well-being of consumers world-wide, and the economic prosperity and productivity of societies, examples include: personal care, domestic and hygiene products; pesticides; pharmaceuticals; and plastics. Environmental and human exposure to these chemicals can occur throughout the life cycle of a product; from its manufacture, distribution and use, to exposure after disposal and breakdown of the product. There has been widespread concern about the pervasive use of chemicals and their potential dangerous side-effects on wildlife and humans ever since Rachel Carson's landmark book in 1962 about the environmental hazards of the pesticide DDT. For instance, the 'feminising' effects on fish populations caused by low concentrations of natural and synthetic estrogens (e.g. in the contraceptive pill) and their chemical mimics (so-called micropollutants) is well publicised. It is widely suspected, though not proven, that many micropollutants are linked to cancers, reproductive and developmental diseases in humans. In fact there has been a relative rise in the incidence of such chronic diseases in the last two decades, making them surpass infectious diseases as the biggest global killer. These facts together with other case studies of environmental, occupational and consumer hazards, have led the European Union to enact the precautionary principle in a number of comprehensive legislative directives including chemical regulation and management of the water environment to protect the environment and human health. Analysis has shown that the benefit of such measures far out way their costs.The ways in which we can reduce risks to these chemicals are: i) by identifying hazardous chemicals and restricting their manufacture, distribution and use more effectively - so called chemical regulationii) by improving engineered technologies to remove hazardous chemical pollutants when they are released into the environment e.g. wastewater treatment worksiii) designing chemicals that have no hazardous properties - so called green chemicals . Microbial biotransformations, such as biodegradation by bacteria, play a direct and key role in each of these risk reduction strategies. In chemical regulation (i above), biodegradation is one of the most important factors in determining the extent and likelihood that a given chemical will persist in the environment (air, water, soil and sediment) and therefore the likely concentration to which wildlife and humans will be exposed. Known hazardous (toxic) chemicals tend to persist longer than non-hazardous ones. Biodegradation is also a central process in which many engineered technologies remove chemical pollutants (ii above). We also need to evaluate biodegradation in order to understand what chemical structures are resistant to biodegradation, and thereby avoid their use in the design of new products (iii above). This research has two objectives towards providing greater certainty and improvements in risk mitigation strategies:1. To build a world class team to tackle this challenging issue.2. To discover the fundamental rules that govern micropollutant biotransformation through case studies.The research will benefit policy-makers, governmental regulatory agencies, the chemical and water industries, and eventually the whole of society as this scientific understanding improves ways in which chemical risks are managed.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P004180/1
    Funder Contribution: 511,139 GBP

    Summary The engineering core of this project couples an array of carefully selected, physics-based models to support investigation of how stormwater cascades through a city's drainage system, accounting for the dynamics of not just water, but also sediment, debris, natural solutes and contaminants carried by urban runoff. Based on the capability of this suite of models to simulate water flow, storage and quality within an urban system, we will investigate how the performance of grey systems (composed mainly of lined channels, pipes and detention tanks) can be improved by adding Blue-Green Infrastructure and Sustainable Drainage System (SuDS) to create treatment trains designed to manage both the quantity and quality of urban runoff. Models and design solutions will be developed and tested in the contexts of retro-fit (as part of urban renewal and uplift in Newcastle-upon-Tyne) and new build (as part of creation of a 'garden city' in Ebbsfleet, Kent). Our intent is to work out and demonstrate how resilience to floods and droughts can be achieved using integrated systems of Blue-Green and Grey assets, no matter how climate changes in future, assuring continuous, long term service delivery. The work will adopt throughout a whole systems perspective that recognises interdependencies with other urban systems, including transport, energy and land-use. This will identify new opportunities for managing stormwater as a resource that will then be explored. This will add to the multi-functional benefits of using Blue-Green infrastructure to manage flood risk by increasing water security. Possibilities range from non-potable uses in homes or commercial buildings (based on rainwater harvesting) to irrigating green infrastructure (e.g. street trees), managing subsidence in clay soils, soil moisture enhancement and groundwater recharge. Wider benefits may extend to local energy generation using drainage infrastructure (i.e. micro-hydropower) and enhancement of urban watercourses and ecosystem services. The models and protocols developed will form the basis for assessment of the potential for the optimised combinations of Blue, Green, Grey and smart infrastructure to deliver multiple-benefits in UK cities nationwide. However, the goal of optimising urban flood and water management can only be achieved through a deep understanding citizen and community preferences with respect to managing flood risk. In short, engineering solutions must be better informed and explicitly accounted for in urban planning and development at all spatial scales. For this reason, our research will extend to investigation of the planning, development and organisational systems that govern urban flood risk management. This will be addressed using Participatory Action Research and Social Practice Theory to examine the attitudes and responses of citizens and communities to innovation in flood and water management, with the context of urban planning. This aspect of the work is essential to underpin and enable implementation of the engineering analyses and solutions identified in the core research outlined above. The mechanism for bringing together engineering, social and planning components of the project will be co-location research in Newcastle-upon-Tyne and Ebbsfleet, Kent. Team research in these case study cities will establish how barriers to innovation can be overcome despite uncertainties in future urban climates, land-use, development and political leadership. Critical engagement with planners, developers and land-owners throughout the project will feed back and inform the core engineering focus of the work, building on the current trend towards the development of urban infrastructure observatories to explore responses to the innovative changes needed to achieve urban flood resilience.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.