
Research and Productivity Council
Research and Productivity Council
2 Projects, page 1 of 1
assignment_turned_in Project2015 - 2019Partners:KGHM, Natural History Museum, Katanga Mining (Glencore), Brazilian Nickel, Kansanshi Mining Plc +13 partnersKGHM,Natural History Museum,Katanga Mining (Glencore),Brazilian Nickel,Kansanshi Mining Plc,KGHM Polska Miedz (Poland),Natural History Museum,Oriel Resources Ltd,Cobalt Development Institute,Oriel Resources Ltd,Kansanshi Mining Plc,Katanga Mining (Glencore),Brazilian Nickel,Cobalt Institute,RPC,Research and Productivity Council,Mopani Copper Mines Plc,Mopani Copper Mines PlcFunder: UK Research and Innovation Project Code: NE/M011488/1Funder Contribution: 468,521 GBPCobalt is an essential element for modern world. Its use in metal alloys, rechargeable batteries, electronics and high-value chemicals make it critical for a low-carbon society. Cobalt has the largest global market value of any of the individual e-tech elements (US$2.1 billion in 2013). Cobalt is largely recovered as a by-product from the mining of other major metals and as a result, cobalt has not been the focus of study in ore-forming systems on its own. To address this knowledge gap we propose a systematic geological, geochemical and mineralogical approach to understanding the residence of cobalt in a range of important current and future ore minerals in diverse geological environments. A specific focus for this study are deposits forming in the Critical Zone of the Earth's crust where biological activity and weathering coincide and where cobalt is redistributed into forms where innovative bioleaching could change the way deposits are processed. Using new knowledge gained from the study of natural biological systems, advanced bioleaching techniques will be systematically applied to a range of deposits formed in the Critical Zone. Bioleaching also has great potential for reduced, sulfide-rich ores, particularly complex sulfide and often arsenic-rich ore-types where significant bioleaching has not yet been tested. This COG3 proposal builds on our catalyst grant which developed a multi-institute and multi-investigator consortium with internationally recognised expertise across the geosciences including geology, geochemistry, mineralogy, microbiology and bioprocessing based in leading UK academic institutes: Herrington (NHM), Schofield (NHM), Johnson (Bangor), Lloyd (Manchester), Pattrick (Manchester), Coker (Manchester), Roberts (Southampton), Gadd (Dundee), Glass (Exeter), Mosselmans (Diamond) and Kirk (Loughborough), with in-depth expertise on geology, geometallurgy and geomicrobiology applicable to developing recovery strategies for cobalt from natural deposits. This group is underpinned by the Partners including the major mining companies Glencore, FQML and KGHM; a mid-tier European-based mining company Oriel; a junior UK-based mining SME Brazilian Nickel, an internationally accredited commercial research laboratory RPC and finally the Cobalt Development Institute representing the cobalt industry throughout the supply chain. They have all pledged to engage with the project, some through direct involvement in research activities, some with financial support for research and training and others by facilitating access to natural deposits and datasets. Further support comes from research colleagues at CSIRO in Australia. Specific research will be delivered through a series of work packages which will address: 1) Geology and mineralogy of cobalt in natural systems; 2) Natural biogeochemistry of cobalt; 3) Bioprocessing of cobalt and development of new products; 4) Improving the cobalt supply chain through integrated studies and dialogue with stakeholders representing the supply chain. This research directly addresses the NERC Security of Supply of Mineral Resources (SoS Minerals) initiative Goals 1 & 2 with a fundamental aim to recognise the mineral residence and chemical cycle of cobalt (Goal 1) and provide geometallurgical information that will facilitate new opportunities for improvements to current recovery, minimising waste through geometallurgy; and thoroughly testing innovative, benign bioleach technologies for the extraction and downstream bioengineering of novel cobalt products (Goal 2). Through the collaboration of the PIs, Co-Pis, Partners and the development of PDRAs and PhDs, the program will produce high impact scientific publications for the international literature, highly significant public outreach and education on behalf of the NERC SoS programme and establish the UK COG3 consortium as a world leader in research into innovative cobalt recovery from natural mineral deposits.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::556b6725684dfd156e1d6fa0f1e6a9af&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::556b6725684dfd156e1d6fa0f1e6a9af&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2019Partners:Umwelt und Ingenieurtechnik GmbH, Oakdene Hollins (United Kingdom), RPC, SRK Consulting UK Ltd, Tanbreez Mining Greenland A/S +23 partnersUmwelt und Ingenieurtechnik GmbH,Oakdene Hollins (United Kingdom),RPC,SRK Consulting UK Ltd,Tanbreez Mining Greenland A/S,SRK Consulting UK Ltd,UNIVERSITY OF EXETER,Tanbreez Mining Greenland A/S,Maakrish Ltd,Helmholtz Association of German Research Centres,FAPESP,Greenland Rare Earth Projects Ltd,Research and Productivity Council,Umwelt und Ingenieurtechnik GmbH,Mkango Resources Limited,UCT,Greenland Rare Earth Projects Ltd,Mkango Resources Limited,University of Exeter,Nuna Minerals A/S,Helmholtz Association of German Research Centres,Namibia Rare Earths Inc,FAPESP (Sao Paulo Research Foundation),Nuna Minerals A/S,Namibia Rare Earths Inc,Oakdene Hollins (United Kingdom),University of Exeter,Maakrish LtdFunder: UK Research and Innovation Project Code: NE/M011429/1Funder Contribution: 549,872 GBPRare earth elements (REE) are the headline of the critical metals security of supply agenda. All the REE were defined as critical by the European Union in 2010, and in subsequent analysis in 2014. Similar projects in the UK and USA have highlighted 'heavy' REE (HREE - europium through to lutetium) as the metals most likely to be at risk of supply disruption and in short supply in the near future. The REE are ubiquitous within modern technologies, including computers and low energy lighting, energy storage devices, large wind turbines and smart materials, making their supply vital to UK society. The challenge is to develop new environmentally friendly and economically viable, neodymium (Nd) and HREE deposits so that use of REE in new and green technologies can continue to expand. The principal aims of this project are to understand the mobility and concentration of Nd and HREE in natural systems and to investigate new processes that will lower the environmental impact of REE extraction and recovery. By concentrating on the critical REE, the research will be wide ranging in the deposits and processing techniques considered. It gives NERC and the UK a world-leading research consortium on critical REE, concentrating on deposit types identified in the catalyst phase as most likely to have low environmental impact, and on research that bridges the two goals of the SoS programme. The project brings together two groups from the preceding catalyst projects (GEM-CRE, MM-FREE) to form a new interdisciplinary team, including the UK's leading experts in REE geology and metallurgy, together with materials science, high/low temperature fluid geochemistry, computational simulation/mineral physics, geomicrobiology and bioprocessing. The team brings substantial background IP and the key skills required. The research responds to the needs of industry partners and involves substantive international collaboration as well as a wider international and UK network across the REE value chain. The work programme has two strands. The first centres on conventional deposits, which comprise all of the REE mines outside China and the majority of active exploration and development projects. The aim is to make a step change in the understanding of the mobility of REE in these natural deposits via mineralogical analysis, experiments and computational simulation. Then, based on this research, the aim is to optimise the most relevant extraction methods. The second strand looks to the future to develop a sustainable new method of REE extraction. The focus will be the ion adsorption deposits, which could be exploited with the lowest environmental impact of any of the main ore types using a well-controlled in-situ leaching operation. Impact will be immediate through our industry partners engaged in REE exploration and development projects, who will gain improved deposit models and better and more efficient, and therefore more environmentally friendly, extraction techniques. There will be wider benefits for researchers in other international teams and companies as we publish our results. Security of REE supply is a major international issue and the challenges tackled in this research will be relevant to practically all REE deposits. Despite the UK not having world class REE deposits itself, the economy is reliant on REE (e.g. the functional materials and devices industry is worth ~£3 Bn p.a.) and therefore the UK must lead research into the extraction process. Manufacturers who use REE will also benefit from the research by receiving up to date information on prospects for future Nd and HREE supply. This will help plan their longer term product development, as well as shorter term purchasing strategy. Likewise, the results will be useful to inform national and European level policy and to interest, entertain and educate the wider community about the natural characters and importance of the REE.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::01e0f23609a522a0da9411e68547d1f1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::01e0f23609a522a0da9411e68547d1f1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu