Powered by OpenAIRE graph
Found an issue? Give us feedback

Thermo Fisher Scientific (United Kingdom)

Thermo Fisher Scientific (United Kingdom)

22 Projects, page 1 of 5
  • Funder: UK Research and Innovation Project Code: BB/F011687/1
    Funder Contribution: 161,594 GBP

    Medical diagnosis and the resulting treatment will improve the results significantly when a more personalized system for health assessment is implemented. This can be achieved by providing detailed information about the metabolic status of individuals. The use of metabolomic data to predict the health trajectories of individuals will require bioinformatic tools and quantitative reference databases. For example protein phosphorylation is probably the most important regulatory event in eukaryotes. Many enzymes and receptors are switched 'on' or 'off' by phosphorylation and dephosphorylation. Antibodies can be used as powerful tools to detect whether a protein is phosphorylated at any particular site. Such antibodies are called phospho-specific antibodies; hundreds of such antibodies are now available. They are becoming critical reagents both for basic research and for clinical diagnosis. Approaches to identify and more importantly quantify phosphorylated proteins, like mass spectrometry-based proteomics, are becoming increasingly important for the systematic analysis of complex phosphorylation networks. However, most of them lack the ability to identify the phosphorylation status rapidly and accurately. Furthermore, other post translational modification such as sulphurylation and the redox status of translational proteins and selenoproteins could give vital information about the metabolic status of an individual. Two challenges lie ahead for the bioanalytical community; the separation of the complex mixtures of metabolites, peptides and proteins and their quantitative determination. Most methods can only cover one of the challenges. Here, with this proposal, we seek funding to complete the world-wide unique set-up the SCOttish Trace element Speciation & Metabolomics Analytical Network (SCOTSMAN), a new combination of chromatography and/or electrophoresis and dual mass spectrometry to develop a rapid separation technique which is capable of online identification and quantification of metabolites and proteins which have been labelled or tagged in a complex matrix of organic compounds which do not contain an hetero-element. Hence, this method is able to pick out the needles in the haystack. This set-up will be able to quantify biomolecules containing a hetero-element such as phosphorous or sulphur or metals and metalloids such as copper, selenium and arsenic. Using element-specific detection coupled with high resolution mass separation, the requested instrument is capable of quantifying the compounds at ultra-trace level which is relevant for background studies and non diseased individuals. Since the instrument response is not dependant on the compound itself, it can be used to quantify the element in the introduced sample without having the exact compound as a standard. If that analyser is now coupled to a separation method online, the unambiguous quantification of the compound carrying the tag or label can be done directly. When identification of certain metabolites is of importance, the second complementary molecular mass analyser (already in place) will provide accurate data on the mass of the molecule simultaneously. This information is vital to deduce molecular formula. Altogether this proposal, supported by the manufacturer and a charity organisation has an extremely good add on value, since the requested instrument will be coupled directly with additional complementary mass analyser with similar calibre to built this unique analytical set-up for biologists, plant physiologists, microbiologists, researcher interested in systems biology and pharmacologists.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/I019786/1
    Funder Contribution: 67,757 GBP

    New analytical capabilities enabling the analysis of smaller amounts of material lead directly to the development of new avenues of research in earth and environmental science. In-situ techniques such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and secondary ion mass spectrometry (SIMS) allow small amounts of material to be analysed (c.1-5ng) directly without the blank contribution from processing reagents which limit traditional dissolution-based methodologies. However, for materials of small size and/or low concentrations of analyte, the signal:noise ratio (SNR) limits the precision of the analysis. This dictates analysis of larger amounts of material to achieve the required precision, even for sensitive in-situ techniques. We intend to develop ground breaking laser ablation acquisition and data handling methods to routinely achieve higher SNR's and enhance precision. These methods will be applied to picogram-nanogram quantities of material, depending on the application. To demonstrate this capability, our primary application will be the uranium isotopic characterization of 1micron uranium oxide (UOx) particles for nuclear forensic investigations. This is an internationally important application with a pressing need to characterize individual micron-sized uranium particles collected during international monitoring operations. Isotope ratios from nuclear materials reveal details about their processing, origin, and purpose. Different degrees of enrichment from natural compositions (238U/235U = 137.88) are required for nuclear power (238U/235U to c.33) and nuclear weapons (238U/235U c. 1) whilst only minimal (c.0.13%) fractionation occurs in nature. Enrichment processes also produce equally disparate 236U/238U ratios. Uranium isotope ratios can therefore successfully fingerprint the source and ultimate origins of contaminant UOx particles. The challenge is therefore to analyse uranium isotope ratios from individual fine particles. Other techniques such as: alpha and gamma-ray spectrometry, fission-track, conventional thermal ionisation mass spectrometry (TIMS), SIMS and conventional solution multi-collector(MC-)ICP-MS, are either too time consuming and/or expensive, have low precision and/or resolution, or suffer from significant potential background and blank level limitations or interferences. Laser ablation MC-ICP-MS offers a potential solution for all applications requiring the analysis of low amounts of analyte, but only if new methodologies, such as those described here are developed. This proposal details how accurate quantification of isotope ratios in 1micron particles will be achieved using new analytical techniques such as laser ablation in liquid (LASIL), micro-volume ablation cell and torch technology, single pulse acquisition and total signal integration (TSI) data processing techniques. All these methods enhance SNR's and improve spatial resolution in mapping. LASIL combines the sampling benefits of LA with the SNR enhancement of solution mode analysis and offers the exciting possibility of in-drop single-bead post-ablation clean up and accumulation of material (where adequate sample is available) in a single drop to achieve a measureable concentration. The appropriate combination of all these approaches has the potential to successfully analyse 1micron particles and dramatically improve the spatial resolution and utility of LA-ICP-MS applied to environmental sciences. The student will benefit from training at NIGL, a world-class isotope geoscience laboratory, and integration at Loughborough, one of the UK's largest analytical science centres and one specialized in LA-ICP-MS science. The student will attend relevant modules of the MSc programme in Analytical Chemistry and Environmental Science at the University and participate in the graduate school training programme in transferrable and professional skills, also benefiting from annual reporting and progression vivas.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/D524524/1
    Funder Contribution: 200,000 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/E01268X/1
    Funder Contribution: 92,854 GBP

    The technology underpinning biology is advancing at an ever increasing rate. To remain competitive on a world stage UK researchers need access to the very latest technologies. Microarray technology is no exception. Microarray technology enables researchers to track thousands (sometimes hundreds of thousands) of genes in a single experiment and hence make global comparisons of either different cell types or different phenotypes/genotypes. For instance, using microarrays we can discover why certain human races suffer a higher incidence of specific genetic diseases or why certain wheat varieties yield more than others. Recent advances in microarray technology have resulted in both cost reductions and increased throughput. The US-based organisation Affymetrix is the leading company in the high-density array (Genechip) market. Current Affymetrix GeneChip technology has resulted in higher density GeneChips and an increasing number of novel applications. The latest generation of GeneChips include the highest density 5um Exon and Tiling arrays, whole genome 500K mapping arrays as well as the latest targeted genotyping system incorporating Molecular Inversion Probe (MIPs) technology which is the most advanced array/genotyping technology currently available and enables the highest level of genotype multiplexing possible (~200,000 loci per experiment). Access to such resources would give researchers associated with the Bristol Transcriptomics facility a competitive advantage over researchers who do not. However, it is important to note that the Bristol facility is open to all researchers.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/D524808/1
    Funder Contribution: 169,990 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.