
Ciemat
Ciemat
2 Projects, page 1 of 1
assignment_turned_in Project2017 - 2022Partners:Ciemat, UCG, University of Windsor, Indian Institute of Technology Guwahati, ETI +29 partnersCiemat,UCG,University of Windsor,Indian Institute of Technology Guwahati,ETI,National Grid PLC,Polytechnic University of Milan,UVA,University of Malta,Energy Technologies Institute (ETI),Indian Institute of Technology Guwahati,EDF Energy (United Kingdom),Rolls-Royce (United Kingdom),Hydrostor, Inc.,Hydrostor, Inc.,Massachusetts Institute of Technology,Highview Power Storage (United Kingdom),British Energy Generation Ltd,CIEMAT (Ctr for Energy, Env & Tech Res),University of California Los Angeles,Massachusetts Institute of Technology,Rolls-Royce Plc (UK),University of Malta,University of Nottingham,NTU,University of Windsor,University of California Los Angeles,MIT,EDF Energy Plc (UK),University of Virginia,National Grid plc,Highview Power Storage,University of Melbourne,Rolls-Royce (United Kingdom)Funder: UK Research and Innovation Project Code: EP/P023320/1Funder Contribution: 332,646 GBPThis project will assess a class of systems that blend electricity generation and storage, to understand the role that they could play in future energy systems. Their ability to deliver low-carbon energy on demand, at low system cost, will be investigated from technical, economic, and policy standpoints. With a growing fraction of electricity consumption being supplied by variable renewable energy sources, the ability to match energy generation and energy consumption is rapidly taking centre stage. Flexible ('dispatchable') coal and gas plants are being displaced to lower carbon emissions. At present, both nuclear and renewable energy technologies are generally configured to generate as much electricity as possible, regardless of the electricity demand at the time. Standalone energy storage, in which surplus electricity is converted to an intermediate energy form and then back again, is emerging as a vital partner to these generation technologies but it is prohibitively expensive for the duties that will be required in the near future. Active management of electricity demand (by shutting down or deferring loads) and electrical interconnections with neighbouring countries will also play important roles but these also have costs and they will not obviate the need for storage. This project will build a deep understanding of a class of system which takes a different and potentially much lower cost approach. These Generation Integrated Energy Storage (GIES) systems, store energy in a convenient form before converting it to electricity on demand. The hypothesis is that the lowest cost and highest performance storage can be achieved by integrating generation and storage within one system. This avoids the expense and inefficiency of transforming primary energy (e.g. wind, solar, nuclear) into electricity, then into an intermediate form, and later back to electricity. For example, the heat produced by a concentrating solar power plant can be stored at far lower cost and with lower losses than producing electricity directly and operating a standalone electricity store. A broad range of opportunities exist for low-carbon GIES systems, in both renewable and nuclear applications. The research team's expertise in wind, nuclear, and liquefied air storage will be applied directly to GIES systems in all three. The project will also establish a framework for the wider significance of GIES to energy systems. Technical and thermodynamic metrics that characterise high performing GIES systems will be developed, and used to compare with standalone generation and storage equivalents. The theoretical groundwork laid by this research will have applications far beyond the current project. Opportunities for current and future technologies will be mapped out and publicised, supporting and accelerating further work in the field. The deployment and operation of such technologies will be modelled by means of a pragmatic real options economic analysis. The unique policy and economic considerations of fusing generation and storage will be reviewed in detail, considering challenges and proposing solutions to regulatory and financial hurdles. Taken in concert, these will determine the value and scope for substantial deployment of GIES systems. In bringing to light the potential of the class of GIES systems, the research team will rectify a gap in energy systems thinking, in time to inform what will be a multi-billion pound expenditure in the coming decade. By providing the tools to analyse and deploy these systems, the research will open up a new avenue for cost-effective flexibility across the energy infrastructure of the UK and other regions worldwide.
more_vert assignment_turned_in Project2020 - 2025Partners:NMAM Institute of Technology, SJTU, North East Process Industry ClusterNEPIC, SINTEF Energi AS (Energy Research), Power Roll +72 partnersNMAM Institute of Technology,SJTU,North East Process Industry ClusterNEPIC,SINTEF Energi AS (Energy Research),Power Roll,NEPIC,Durham County Council,Northern Powergrid (United Kingdom),European Energy Research Alliance (EERA),Tata Steel Europe,Kensa Group Ltd,Leuphana University,CIH,Royal Academy of Engineering,Nestle UK Ltd,Assoc for Conservation of Energy (ACE),Association for Decentralised Energy,NESTLE UK LTD,Tata Steel (United Kingdom),Durham County Council,Dept for Business, Innovation and Skills,Energy Networks Association,GE Aviation,NMAM Institute of Technology,Leuphana University of Lüneburg,Leuphana University,Visvesvaraya Technological University,NTU,Department for Business, Energy and Industrial Strategy,SINTEF AS,Star Refrigeration Ltd,POWER ROLL LIMITED,Association for Decentralised Energy,Energy Systems Catapult,Ciemat,Big Solar Ltd,National Institute of Technology,Mineral Products Association,E.ON Energy Solutions Ltd,Nanyang Technological University,Agility Eco Services Ltd,Durham University,Confederation of Paper Industries,The Institute of Materials,The Institute of Materials,The Chartered Institute of Building,Tata Steel (UK),European Energy Research Alliance AISBL,CIEMAT (Ctr for Energy, Env & Tech Res),Heat Pump Association,National Institute of Technology Karnata,Confederation of Paper Industries,AGFW (Energy Efficiency Association),North East Process Industry ClusterNEPIC,E.ON Energy Solutions Ltd,Dept for Sci, Innovation & Tech (DSIT),Star Refrigeration Ltd,NAREC National Renewable Energy Centre,University of Sheffield,Heat Pump Association,GT Energy,AGFW (Energy Efficiency Association),The Climate Change Committe,Royal Academy of Engineering,University of Sheffield,Agility Eco Services Ltd,Kensa Engineering Ltd,Mineral Products Association,Narec Distributed Energy,Euroheat & Power,GE (General Electric Company) UK,GT Energy UK Ltd,Euroheat & Power,Durham University,Energy Systems Catapult,Energy Networks Association,The Committee on Climate ChangeFunder: UK Research and Innovation Project Code: EP/T022906/1Funder Contribution: 1,159,700 GBPDecarbonising both heating and cooling across residential, business and industry sectors is fundamental to delivering the recently announced net-zero greenhouse gas emissions targets. Such a monumental change to this sector can only be delivered through the collective advancement of science, engineering and technology combined with prudent planning, demand management and effective policy. The aim of the proposed H+C Zero Network will be to facilitate this through funded workshops, conferences and secondments which in combination will enable researchers, technology developers, managers, policymakers and funders to come together to share their progress, new knowledge and experiences. It will also directly impact on this through a series of research funding calls which will offer seed funding to address key technical, economic, social, environmental and policy challenges. The proposed Network will focus on the following five themes which are essential for decarbonising heating and cooling effectively: Theme 1 Primary engineering technologies and systems for decarbonisation Theme 2 Underpinning technologies, materials, control, retrofit and infrastructure Theme 3 Future energy systems and economics Theme 4 Social impact and end users' perspectives Theme 5 Policy Support and leadership for the transition to net-zero
more_vert