
Wood Group
Wood Group
6 Projects, page 1 of 2
assignment_turned_in Project2019 - 2027Partners:Wood Group, OFFSHORE RENEWABLE ENERGY CATAPULT, Vattenfall Wind Power Ltd, Sennen, James Fisher Marine Services +72 partnersWood Group,OFFSHORE RENEWABLE ENERGY CATAPULT,Vattenfall Wind Power Ltd,Sennen,James Fisher Marine Services,RenewableUK,Plymouth University,Nordex SE Hamburg,Ramboll Wind,Siemens AG,MET OFFICE,Atlantis Operations (UK) Ltd,Marine Scotland Science,RenewableUK,UNIVERSITY OF PLYMOUTH,Babcock International Group Plc (UK),DNV GL (UK),Energy Technology Partnership,Vestas (Denmark),Atlantis Operations (UK) Ltd,Frazer-Nash Consultancy Ltd,Sennen,University of Western Australia,Tufts University,FHG,BVG Associates Ltd,BVG Associates Ltd,Fugro GEOS Ltd,E.ON Climate & Renewables GmbH,Energy Technology Partnership,Met Office,Wood Group,DNV GL (UK),Insight Analytics Solutions,EDGE Solutions Limited,Adwen Technology,Atkins (United Kingdom),Vattenfall Wind Power Ltd,Scottish Power (United Kingdom),Nova Innovation,UWA,SSE Energy Supply Limited UK,Siemens AG (International),James Fisher Marine Services,Nova Innovation Ltd,Fugro (UK),EireComposites Teo,SCOTTISH POWER UK PLC,Atkins Ltd,Subsea UK,Scottish Power (United Kingdom),EireComposites Teo,University of Strathclyde,Lloyd's Register Foundation,EDGE Solutions Limited,University of Strathclyde,Adwen Technology,Orsted (UK),RES,Tufts University,Lloyd's Register EMEA,Ramboll Wind,E.ON Climate & Renewables GmbH,Met Office,Narec Capital Limited,SSE Energy Supply Limited UK,Subsea UK,Fraunhofer,Vestas Wind Systems A/S,MSS,Babcock International Group Plc,Renewable Energy Systems Ltd,Orsted,Lloyd's Register Foundation,Atkins Ltd,Offshore Renewable Energy Catapult,Insight Analytics SolutionsFunder: UK Research and Innovation Project Code: EP/S023801/1Funder Contribution: 6,732,970 GBPThis proposal is for a new EPSRC Centre for Doctoral Training in Wind and Marine Energy Systems and Structures (CDT-WAMSS) which joins together two successful EPSRC CDTs, their industrial partners and strong track records of training more than 130 researchers to date in offshore renewable energy (ORE). The new CDT will create a comprehensive, world-leading centre covering all aspects of wind and marine renewable energy, both above and below the water. It will produce highly skilled industry-ready engineers with multidisciplinary expertise, deep specialist knowledge and a broad understanding of pertinent whole-energy systems. Our graduates will be future leaders in industry and academia world-wide, driving development of the ORE sector, helping to deliver the Government's carbon reduction targets for 2050 and ensuring that the UK remains at the forefront of this vitally important sector. In order to prepare students for the sector in which they will work, CDT-WAMSS will look to the future and focus on areas that will be relevant from 2023 onwards, which are not necessarily the issues of the past and present. For this reason, the scope of CDT-WAMSS will, in addition to in-stilling a solid understanding of wind and marine energy technologies and engineering, have a particular emphasis on: safety and safe systems, emerging advanced power and control technologies, floating substructures, novel foundation and anchoring systems, materials and structural integrity, remote monitoring and inspection including autonomous intervention, all within a cost competitive and environmentally sensitive context. The proposed new EPSRC CDT in Wind and Marine Energy Systems and Structures will provide an unrivalled Offshore Renewable Energy training environment supporting 70 students over five cohorts on a four-year doctorate, with a critical mass of over 100 academic supervisors of internationally recognised research excellence in ORE. The distinct and flexible cohort approach to training, with professional engineering peer-to-peer learning both within and across cohorts, will provide students with opportunities to benefit from such support throughout their doctorate, not just in the first year. An exceptionally strong industrial participation through funding a large number of studentships and provision of advice and contributions to the training programme will ensure that the training and research is relevant and will have a direct impact on the delivery of the UK's carbon reduction targets, allowing the country to retain its world-leading position in this enormously exciting and important sector.
more_vert assignment_turned_in Project2019 - 2027Partners:Oak Ridge National Laboratory, Sellafield Ltd, Cavendish Nuclear, Westinghouse Electric (Sweden), AWE +55 partnersOak Ridge National Laboratory,Sellafield Ltd,Cavendish Nuclear,Westinghouse Electric (Sweden),AWE,Nuclear Decommissioning Authority,EDF Energy Plc (UK),Hitachi Europe Ltd,Westinghouse Electric (United States),Thor Energy AS,Horizon Nuclear Power Services Ltd,Wood Group,DBD ltd,Sellafield Ltd,Rolls-Royce (United Kingdom),EDF Energy (United Kingdom),Laing O'Rourke plc,DBD ltd,ORNL,Khalifa University,British Energy Generation Ltd,Atkins Ltd,Thor Energy AS,University Of New South Wales,Hitachi-GE Nuclear Energy Ltd,Henry Royce Institute,Atkins (United Kingdom),AWE plc,Australian Nuclear Science and Tech,Atkins Ltd,Wood Group,Tokamak Solutions UK Ltd,ANSTO,UKAEA,National Nuclear Laboratory (NNL),FRAZER-NASH CONSULTANCY LTD,Framatome ANP,Tokamak Energy Ltd,TOKAMAK ENERGY LTD,Cavendish Nuclear,NNL,Hitachi Ltd,UNSW,Khalifa University,Laing O'Rourke,Hitachi-GE Nuclear Energy Ltd,Frazer-Nash Consultancy Ltd,University New South Wales at ADFA,Westinghouse Electric Sweden AB,Radioactive Waste Management Ltd.,United Kingdom Atomic Energy Authority,Rolls-Royce Plc (UK),Radioactive Waste Management Ltd.,ANSTO,Framatone ANP,Imperial College London,Rolls-Royce (United Kingdom),Henry Royce Institute,Horizon Nuclear Power Services Ltd,EURATOM/CCFEFunder: UK Research and Innovation Project Code: EP/S023844/1Funder Contribution: 6,596,590 GBPThe EPSRC Centre for Doctoral Training (CDT) in Nuclear Energy Futures aims to train a new generation of international leaders, at PhD level, in nuclear energy technology. It is made up of Imperial College London (lead), Bristol University, Cambridge University, Open University and Bangor University. These institutions are some of the UK's leading institutions for research and teaching in nuclear power. The CDTs key focus is around nuclear fission i.e. that is the method of producing energy by splitting the atom, which currently accounts for 11% of the world's electricity and 20% of the UK's electricity, whilst producing very low levels of carbon emissions (at levels the same as renewable energy, such as wind). The CDT whilst focused on fission energy technologies will also have PhD projects related to fusion nuclear energy and projects needed or related to nuclear energy such as seismic studies, robotics, data analytics, environmental studies, policy and law. The CDT's major focus is related to the New Nuclear Build activities at Hinkley Point, Somerset and the Anglesey site in north Wales, where EDF Energy and Horizon, respectively, are building new fission power plants that will produce around 3.2 and 2.7 GWe of nuclear power (about 13% of the UK current electricity demand). The CDT will provide the skills needed for research related to these plants and potential future industry leaders, for nuclear decommissioning of current plants (due to come off-line in the next decade) and to lead the UK in new and innovative technologies for nuclear waste disposal and new reactor technologies such as small modular reactors (SMRs). The need for new talented PhD level people is very high as many of the UK's current technical experts were recruited in the 1970s and 80s and many are near retirement and skills sector studies have shown many more are needed for the new build projects. The CDT will champion teaching innovation and will produce a series of bespoke courses that can be delivered via on-line media by the very best experts in the field from across the CDT covering areas such as the nuclear fuel cycle; waste and decommissioning; small modular reactors; policy, economics and regulation; thermal hydraulics and reactor physics as well as leading on responsible research and innovation in the sector. The CDT is supported by a wide range of nuclear companies and stakeholders. These include those involved in the new build process in the UK such as EDF Energy, Hitachi-GE, Horizon and Rolls-Royce, the latter of which are developing a UK advanced modular reactor design. International nuclear stakeholders from countries such as the USA, UAE, Australia and France will support the student development and the CDT programme. The students in the CDT will cover a very broad training in all aspects of nuclear power and importantly for this sector will engage in both media training activities and public outreach to make nuclear power more open to the public, government and scientists and engineers outside of the discipline.
more_vert assignment_turned_in Project2021 - 2025Partners:Simec Atlantis Energy, SCHOTTEL HYDRO GmbH, Simec Atlantis Energy, Orbital Marine Power, Wood Group +11 partnersSimec Atlantis Energy,SCHOTTEL HYDRO GmbH,Simec Atlantis Energy,Orbital Marine Power,Wood Group,Wood Group,Nova Innovation,ACT Blade Ltd,University of Edinburgh,Nova Innovation Ltd,ACT Blade Ltd,Orbital Marine Power,Nautricity,SCHOTTEL HYDRO GmbH,Nautricity,Atlantis ResourcesFunder: UK Research and Innovation Project Code: EP/V009443/1Funder Contribution: 909,850 GBPThis project aims to demonstrate at model-scale a novel technology to reduce unsteady-loading for tidal turbines, improving resilience and reliability, and decreasing the levelised cost of energy. Tidal energy is a promising renewable energy source that can contribute to providing energy security to the UK. The first and second array of tidal turbines has now been deployed in Scotland, confirming the UK as a world leader in this emerging energy sector. One of the main technical challenges of harvesting energy from tidal currents is the large load fluctuations experienced by the blades. These can result in fatigue failures of the blades and in power fluctuations at the generator that must be smoothed before power can be provided to the grid. The aim of this project is to develop a technology that cancels the unsteady loading at its source, while adding minimal complexity to the turbine to ensure high resilience and reliability of the overall system. The technology currently adopted to mitigate load fluctuations in air, such as that one employed by wind turbines and aerial vehicles, is not directly transferable to tidal turbines because of the harsh marine environment and the high hydrodynamic loads. For example, complex systems requiring hinges with bearings would be subjected to fouling and would reduce the blade reliability. To address this issue, we would consider introducing local flexibility that does not affect the key structural elements of the blade, and whose displacement can mitigate load fluctuations. The lowest loaded part of the blade is the trailing edge, and this is also where the smallest shape morphing can lead to the largest changes in the overall load. We could manufacture a blade made of the same material as a conventional rigid blade (fibreglass) but with a structural design that allows the trailing edge to bend to react to flow changes. To ensure high reliability of the system, we could exploit passive deformation without sensors and actuators. The small inertia of the part of the blade that bends would enable a prompt reaction to flow fluctuations. Our preliminary studies showed that a blade with a flexible trailing edge can theoretically mitigate more than 90% of the load fluctuations without affecting the mean power output. This project aims to verify these initial results by testing model-scale prototypes. We aim to design and manufacture two sets of 0.6 m and 1.2 m span blades to undertake fluid dynamics tests on a model-scale turbine and fatigue tests, respectively. These tests will demonstrate the efficacy, robustness, resiliency and reliability of morphing blades. The project includes key tidal and wind energy technology companies: SIMEC Atlantis Energy, Orbital Marine Power, Nautricity, Nova Innovation, Schottel Hydro, ACT Blades and Wood Group. Together with these industrial partners we aim to investigate the applicability of morphing blades to different tidal technologies, from 70 kW to 2 MW, from 4 m to 20 m diameter, and both seabed mounted and floating turbines with single and multi rotors. If proven effective for tidal turbines, we would also explore with our wind energy partners (ACT Blades and Wood Group) whether this technology is suitable to complement or replace some of the existing unsteady load mitigation technology currently adopted by wind turbines. Morphing blades could contribute to reduce fatigue loads, to increase reliability and lifetime yield, and hence to reduce the levelised cost of energy. It is envisaged that this technology could be more suitable for offshore wind turbines than onshore wind turbines because of the higher relative importance of component reliability. Overall this project aims to investigate the suitability of morphing blades to mitigate unsteady loads on tidal turbines, aiming at decreasing costs of blades and increase the energy yields, and thus decrease the overall cost of tidal energy.
more_vert assignment_turned_in Project2018 - 2022Partners:NUS, TNO Netherlands, Orcina Ltd, Orcina Ltd, Xodus Group UK +9 partnersNUS,TNO Netherlands,Orcina Ltd,Orcina Ltd,Xodus Group UK,Newcastle University,TMF Consortium,Newcastle University,Wood Group,Wood Group,Netherlands Organisation for Applied Scientific Research,TNO Netherlands,Xodus Group UK,TMF ConsortiumFunder: UK Research and Innovation Project Code: EP/P033148/1Funder Contribution: 575,474 GBPThe MUFFINS project assembles a multidisciplinary team from Newcastle University, Imperial College London, University of Glasgow, industrial partners including BP, Chevron, TOTAL and Forsys Subsea, who are members of the Transient Multiphase Flow and Flow Assurance Consortium, Wood Group, Xodus Group, Orcina and TNO in the Netherlands, and an academic partner, the National University of Singapore, to develop the next generation of pioneering technologies and cost-efficient tools for the safe, reliable and real-life designs of subsea systems (pipelines, risers, jumpers and manifolds) transporting multiphase hydrocarbon liquid-gas flows. This world-leading academia-industry collaboration will be the first of its kind to strengthen the UK international competitiveness in multiphase flow designs for offshore oil and gas applications. The proposed framework will specifically address fundamental and practical challenges in areas of internal multiphase flow-induced vibration (MFIV), in combination with external flow vortex-induced vibration (VIV), whose fatigue damage effects due to complicated fluid-structure interaction mechanisms can be catastrophic and result in costly production downtime. From a practical viewpoint, liquid-gas slug flows induced by the pipe geometry, seabed topography or thermo-physic-hydrodynamic instability, are common and problematical. Such flows have a highly complex hydrodynamic nature as the different mechanical properties of the deformable and compressible phases cause spatial and temporal variability in the combination and interaction of the interfaces. Subsea layout architecture, operational lifetime and environmental conditions can all affect the flow-pipe interaction patterns. Nevertheless, reliable practical guidelines and systematic frameworks for the response, stress and fatigue assessment of subsea structures undergoing MFIV are lacking. Greater complexities and unknowns arise when designing these structures subject to combined MFIV-VIV. Through an integrated programme combining modelling, simulation and experiment, high-fidelity three-dimensional computational fluid dynamics will be performed and a hierarchy of innovative and cost-efficient reduced-order models will be developed to capture vital multiple MFIV and VIV effects, providing significant insights into detailed flow features and fluid-structure coupling phenomena. Validation, verification, uncertainty and reliability analyses will be carried out by comparing numerical results with experimental tests and industrial data to improve confidence in identifying the likelihood of fatigue failure and safety risks. Computationally-efficient tools and open-source codes will be advanced and utilised by industry and worldwide researchers. The project will minimise uncertainties in MFIV-VIV predictions associated with multi-scale multi-physics fluid-elastic solid interactions, ultimately delivering improved design optimisation and control of the most efficient multiphase flow features. The UK oil and gas industry has been at the heart of the UK prosperity for five decades but has faced significant challenges recently. In October 2016, the UK Government founded the Oil & Gas Authority to safeguard collaboration, maximise resource recovery from the UK Continental Shelf, and maintain the UK competitiveness with future investments. In alignment with these strategies, the MUFFINS project will deliver the maximum benefits to and security of global oil and gas energy by means of cutting-edge technologies, cost-efficient tools and recommended guidelines to significantly improve the integrity, reliability and safety of subsea systems transporting multiphase flows. The project will upskill the next-generation engineers and scientists in the oil and gas sector. The technical know-how and deliverables will lead to a transformative improvement in structural designs and reduction of environmental impacts, operational and maintenance costs.
more_vert assignment_turned_in Project2019 - 2028Partners:JBA Consulting, JBA Consulting, University of Edinburgh, British Energy Generation Ltd, Sustainable Marine Energy +5 partnersJBA Consulting,JBA Consulting,University of Edinburgh,British Energy Generation Ltd,Sustainable Marine Energy,Wood Group,EDF Energy (United Kingdom),Floating Wind Turbines Ltd,Sustainable Marine Energy,Wood GroupFunder: UK Research and Innovation Project Code: EP/S023933/1Funder Contribution: 6,150,400 GBPThe need for a network of doctoral engineers with interdisciplinary skills: The UK leads the world in research, innovation, development, demonstration & deployment in wave and tidal technologies. It has 35% & 50% of European wave and tidal current energy potential respectively, and 13% of the shallow-water offshore wind potential. Existing offshore wind technologies could be used to meet 15% of UK electricity demand, with significantly greater potential available in deeper waters for new innovative technologies. The 2017 Digest of UK Energy Statistics shows that wind energy capacity is 16GW (with 5.3GW offshore). The UK has a greater installed capacity of tidal current technologies and has demonstrated a greater number of wave technologies than the rest of the world put together. UK and European offshore wind capacity is expected to increase, respectively by 1 and 2.5 GW/year until 2030. Bloomberg New Energy Finance have projected 115GW of global installed offshore energy capacity by 2030. Cambridge Econometrics have identified that to drive even just this UK development, by 2032, offshore wind would alone need to grow human capacity in the sector to around 60,000 FTE jobs in the UK, with 14,000 directly employed in managerial and professional engineering and scientific roles. The challenges to define and develop the necessary technologies and know-how for the ORE sector are defined by the interaction and inter-dependence of: impact on the natural environment; its energy resources; the emergence of new innovative technologies; manufacture, deployment, operation and maintenance at scale; micro- and macro-economic appraisal; regulation & policy; social & environmental acceptance. Prior experience in IDCORE and Supergen UKCMER, recent roadmaps, and advice from industrial partners show that we must train a connected network of scientists and engineers with deep use-inspired research & innovation skills in their individual domains, and an appreciation of the challenges and state of the art solutions across the breadth of the sector. The approach that will be taken: We propose to establish a new centre, building on the strengths of the successful Industrial Doctoral Centre for Offshore Renewable Energy and Supergen UKCMER. To exploit synergy, opportunities for scale & additional impact, this proposal is made in partnership by the Universities of Edinburgh, Exeter and Strathclyde and the Scottish Association for Marine Sceince. Together we will deliver and operate a fully integrated CDT forming a best-with-best partnership to create future leaders for the British energy systems and to train them to fully integrate offshore renewables into the decarbonised energy systems of the future. Specifically, the new IDCORE CDT will * Graduate 50 new postgraduate students, supervised by a cohort of over 80 academic staff in the UK. * Use world-class UKRI funded facilities to provide cutting-edge training in engineering, science & inter-disciplinary areas; * Deliver impact from excellent research in integrated cross-disciplinary themes from the ocean to the end user; * Train research students throughout the full life cycle of research, spanning theory to practice, including engineering, physical, data & natural science, economics, management, leadership & social-science skills. Overview of the research areas of the centre: Experience, assisted by our industrial partners, has defined the need for research, training and innovation in the following areas: natural resource; environmental impact assessment (and mitigation); development of offshore energy technologies; new materials and science for components, sub-systems and devices in the offshore environment; data science; autonomous inspection and condition monitoring; remote and local operation and maintenance; energy conversion, conditioning, storage and delivery; energy economics, policy and regulation. IDCORE provides this.
more_vert
chevron_left - 1
- 2
chevron_right