Powered by OpenAIRE graph
Found an issue? Give us feedback

ENERIM OY

Country: Finland
8 Projects, page 1 of 2
  • Funder: European Commission Project Code: 101130739
    Funder Contribution: 1,591,600 EUR

    COALESCE aims to develop a cross-optimization platform that enables integrated operation and interplay between the energy grids and the data and telecommunication networks. Telecommunication and data networks need energy, while energy grids need data to operate efficiently. This project will develop a framework that will optimize the interplay between energy grids and telecommunications and data networks in a way that both the infrastructure pillars (energy and telecommunications) are jointly sustainable and efficient. Through the Staff Exchange program, we will be able to exchange expertise and know-how between energy, data and telecommunications sectors across both academia and industry. We will assess how the proposed architecture performs by validating the framework against 4 use case scenarios; a) To investigate optimization algorithms for energy efficiency under simultaneous wireless information and power transfer (SWIPT) will be investigated in a local energy system context for a wireless sensor network. b) To develop a novel framework for predicting and validating trading optimization strategies for in-house energy asset management, considering battery storage, flexible domestic demand, windfarm, solar cells etc,. using neural network and transfer learning-based models; while maintaining sustainable and secure exchange of data and user (or individual residence) portfolio. c) To design novel set of measurement methodologies for the characterization of 5G/6G RAN's energy consumption and open data sets for analysis, parametric models of the energy consumption transfer function for the uplink and downlink and generative neural network models of the energy transfer function for the uplink and downlink. d) To formulate joint data-energy-transportation robust/stochastic optimization algorithms considering computational load flexibility, intermittent energy generation and storage and multi-agent learning algorithms for collaborative e-transportation and SLES.

    more_vert
  • Funder: European Commission Project Code: 771066
    Overall Budget: 3,996,120 EURFunder Contribution: 3,996,120 EUR

    The DOMINOES project aims to enable the discovery and development of new demand response, aggregation, grid management and peer-to-peer trading services by designing, developing and validating a transparent and scalable local energy market solution. The market can be leveraged to share local value, increase renewable energy accessibility and make better use of local grids by Distribution System Operators (DSO), Prosumers/Consumers, Energy Retailers and other key stakeholders. The project will show how DSOs can dynamically and actively manage grid balance in the emerging future where microgrids, ultra-distributed generation and energy independent communities will be prevalent. Best value will only emerge if these resources and stakeholders can be connected to both DSO activities and the centralized market mechanism. The project will establish solutions for this challenge by addressing the following steps: 1. Design and develop a local energy market architecture 2. Develop and demonstrate ICT components enabling the local market concept 3. Develop and demonstrate balancing and demand response services supporting the local markets 4. Design and validate local market enabled business models 5. Analyze and develop solutions for secure data handling related to local market enabled transactions With these steps, the DOMINOES project is able to address all the requirements of the LCE-01-2017 call. The project will deliver 1. new business models for demand response and virtual power plant (VPP) operations; 2. tools and technology validation for demand response services; 3. services based on smart metering; 4. methods to utilize VPPs and microgrids as active balancing assets; 5. secure data handling procedures in local markets. These results will be validated in three validation sites in Portugal and Finland. A DSO environment in Évora (Portugal), a VPP site distributed across bank branches in Portugal and a microgrid site in Lappeenranta (Finland).

    more_vert
  • Funder: European Commission Project Code: 957670
    Overall Budget: 6,271,550 EURFunder Contribution: 5,027,570 EUR

    The iFLEX project aims at empowering the consumers by making it as easy as possible for them to participate in demand response. A core concept of the project is the iFLEX Assistant, a novel software agent that acts between consumer(s), and their energy systems, various stakeholders and The iFLEX project aims at empowering the consumers by making it as easy as possible for them to participate in demand response. A core concept of the project is the iFLEX Assistant, a novel software agent that acts between consumer(s), and their energy systems, various stakeholders and external systems helping them to achieve mutual benefits through local energy management and DR. The iFLEX Assistants are designed to provide a common approach to enhance user experience, level of automation and personalization in a wide variety of DR and energy services. Because of different requirements of these services, the project provides a common software framework (i.e., iFLEX Framework) for developing application-specific iFLEX Assistants that are customized for the needs of particular service(s). The focus is especially on households and DR for supporting high penetration of renewables. In addition, there is a need for effective incentives and market structures that encourage consumers to invest in these innovative DR solutions. To this end, the iFLEX Assistants are customizable for different incentive and market mechanisms to allow exploitation of the solution in different countries and climatic regions, as well as, to enable A/B testing of different incentive and user engagement mechanisms with real-users. Although the focus is on electricity, the iFLEX project targets to overcome the current silo-approaches and provide holistic energy management that optimizes across various energy vectors. Co-creation with end-users is inherent in different project phases and coordinated by consumer organisation in the consortium. iFlex validation is carried out with field pilots in three climatic regions.

    more_vert
  • Funder: European Commission Project Code: 645963
    Overall Budget: 15,381,100 EURFunder Contribution: 11,842,400 EUR

    The project SENSIBLE addresses the call LCE-08-2014 by integrating electro-chemical, electro-mechanical and thermal storage technologies as well micro-generation (CHP, heat pumps) and renewable energy sources (PV) into power and energy networks as well as homes and buildings. The benefits of storage integration will be demonstrated with three demonstrators in Portugal, UK and Germany. Évora (Portugal) will demonstrate storage-enabled power flow, power quality control and grid resilience/robustness in (predominantly low-voltage) power distribution networks – under the assumption that these networks are „weak“ and potentially unreliable. Nottingham (UK) will focus on storage-enabled energy management and energy market participation of buildings (homes) and communities – under the assumption that the grid is „strong“ (so, with no or little restrictions from the grid). Nuremberg (Germany) will focus on multi-modal energy storage in larger buildings, considering thermal storage, CHP, and different energy vectors (electricity, gas). An important aspect of the project is about how to connect the local storage capacity with the energy markets in a way that results in sustainable business models for small scale storage deployment, especially in buildings and communities. SENSIBLE will also conduct life cycle analyses and assess the socio-economic impact of small-scale storage integrated in buildings distribution networks. By integrating different storage technologies into local energy grids as well as homes and buildings, and by connecting these storage facilities to the energy markets, the project SENSIBLE will have a significant impact on local energy flows in energy grids as well as on the energy utilization in buildings and communities. The impacts range from increased self-sufficiency, power quality and network stability all the way to sustainable business models for local energy generation and storage.

    more_vert
  • Funder: European Commission Project Code: 101096200
    Overall Budget: 10,230,300 EURFunder Contribution: 8,032,040 EUR

    The RESONANCE project develops an innovative software framework that provides means for rapid development and plug-and-play deployment of standard-compliant Customer Energy Manager (CEM), Resource Manager (RM), and their aggregation solutions. The CEM, specified in the EN 50491-12 standard family, is the next-generation demand-side flexibility management (DSFM) solution in Europe. CEM is a software agent that automates DSFM by interacting with smart appliances (represented by RMs), aggregators, and the markets to maximize customer benefits. According to the new EN 50491-12-2 standard, CEMs are envisioned to 1) provide a more deterministic demand response, and 2) be able to optimize consumer benefits with respect to multiple incentives and optimization targets. To achieve this, there is a need for accurate models of flexible assets (smart appliances) and model predictive control techniques to automate the decision-making within the customer premises. The RESONANCE Framework will facilitate the adoption of CEMs as the next generation DSFM system by significantly reducing the development efforts and costs. This is achieved with 1) a standard-compliant and modular system architecture, and 2) an innovative modeling pipeline that combines automated machine learning (AutoML) with physics-based modeling to provide accurate and robust models of flexible assets with minimum effort. The project brings together 19 partners (including a cluster with 40 organizations) with inter-disciplinary expertise and forms a basis for a cross-sector energy ecosystem that significantly contributes to the mobilization of DSFM at a large scale. Large scale piloting in six member states with a variety of consumer sectors, flexible assets (e.g. electric vehicles, HVAC systems, and white goods), stakeholders, and market settings (including sector integration with district heating) is utilized for demonstrating and validating the scalability and replication potential of the solutions.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.