
Nanoscribe GmbH
Nanoscribe GmbH
2 Projects, page 1 of 1
assignment_turned_in Project2017 - 2024Partners:Pfizer Global R and D, Texas Instruments (United States), Nanoscribe GmbH, Rogers Corporation, AWE +13 partnersPfizer Global R and D,Texas Instruments (United States),Nanoscribe GmbH,Rogers Corporation,AWE,University of Nottingham,AstraZeneca (United Kingdom),NTU,Rogers Corporation,AstraZeneca plc,Defence Science and Technology Laboratory,Nanoscribe GmbH,Pfizer (United Kingdom),Oce Technologies BV,Atomic Weapons Establishment,Texas Instruments Inc,Canon (Netherlands),Defence Science & Tech Lab DSTLFunder: UK Research and Innovation Project Code: EP/P031684/1Funder Contribution: 5,852,470 GBPTwenty-first century products demand a new toolset of manufacturing techniques and materials; next generation multifunctional Additive Manufacturing (AM) is one such key tool. As an enabler for new smart, cost-effective, functional 3D heterogeneous devices, products and advanced materials, it will be an essential instrument for future industrial applications and advanced research across a wide spectrum of disciplines and sectors. To accelerate next-generation AM, we have established a multi-institution, multidisciplinary team which spans both basic/applied sciences and engineering and involves collaborations with two leading international research groups and eight multinational industry partners. Our vision is to establish controlled next generation multifunctional AM and translate this to industry and researchers. Initially focussing on novel electronic and pharmaceutical/healthcare applications, we aim to move beyond single material AM by exploiting the potential to deposit multiple materials contemporaneously for the delivery of spatially resolved function and structure in three dimensions (3D). Owing to potentially radical differences in physical state, chemistry and compatibility, our primary challenge is at the interface of the deposited materials. This programme will focus on overcoming the challenges of spatially controlled co-deposition of dissimilar materials in 3D and we will establish new understanding and methods of both modelling and controlling co-deposition. Exploitation of our findings will be undertaken through higher TRL schemes with our network of research and industrial partners and the wider innovation ecosystem through existing and future projects.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::668122e523900c141a0cb366a59f1aab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::668122e523900c141a0cb366a59f1aab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2017 - 2022Partners:Intuitive Surgical Inc, Mauna Kea Technologies (France), Medtronic, Mauna Kea Technologies, Nanoscribe GmbH +20 partnersIntuitive Surgical Inc,Mauna Kea Technologies (France),Medtronic,Mauna Kea Technologies,Nanoscribe GmbH,Intel Corporation (UK) Ltd,Beating Bowel Cancer,British Lung Foundation,Tescan UK Ltd,Intel UK,TESCAN UK,Intuitive Surgical Inc,Biocompatibles (United Kingdom),Imperial College London,Breakthrough Breast Cancer,Hansen Medical Inc,Medtronic (United States),Karl Storz GmbH & Co. KG,Breast Cancer Now,Biocompatibles UK Ltd,Karl Storz (Germany),Nanoscribe GmbH,British Lung Foundation,Beating Bowel Cancer,Auris Health (United States)Funder: UK Research and Innovation Project Code: EP/P012779/1Funder Contribution: 6,236,360 GBPAs minimally invasive surgery is being adopted in a wide range of surgical specialties, there is a growing trend in precision surgery, focussing on early malignancies with minimally invasive intervention and greater consideration on patient recovery and quality of life. This requires the development of sophisticated micro-instruments integrated with imaging, sensing, and robotic assistance for micro-surgical tasks. This facilitates management of increasingly small lesions in more remote locations with complex anatomical surroundings. The proposed programme grant seeks to harness different strands of engineering and clinical developments in micro-robotics for precision surgery to establish platform technologies in: 1) micro-fabrication and actuation; 2) micro-manipulation and cooperative robotic control; 3) in vivo microscopic imaging and sensing; 4) intra-operative vision and navigation; and 5) endoluminal platform development. By using endoluminal micro-surgical intervention for gastrointestinal, cardiovascular, lung and breast cancer as the exemplars, we aim to establish a strong technological platform with extensive industrial and wider academic collaboration to support seamless translational research and surgical innovation that are unique internationally.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b15cd6a2d9f979cc331d91789e4f0432&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b15cd6a2d9f979cc331d91789e4f0432&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu