
Siemens VAI
Siemens VAI
5 Projects, page 1 of 1
assignment_turned_in Project2011 - 2012Partners:Siemens VAI, University of Salford, University of Manchester, SIEMENS PLC, Tata Steel +4 partnersSiemens VAI,University of Salford,University of Manchester,SIEMENS PLC,Tata Steel,Tata Steel (United Kingdom),Tata Group UK,Tata Steel (United Kingdom),The University of ManchesterFunder: UK Research and Innovation Project Code: EP/J50080X/1Funder Contribution: 87,508 GBPDuring hot-rolling, the steel industry has no means of determining microstructure development in real-time. Offline analysis of coil-end samples is slow, destructive and does not allow monitoring and control of material properties throughout a production run. Research at the University of Manchester has resulted in the development of a new non-contact system (ROMA), exploiting a novel multi-frequency electromagnetic technique to monitor material microstructure during forced cooling. An important benefit is that it can measure from 0-100% transformation. This collaboration will transfer knowledge to Siemens and enable commercial exploitation by reference-site installation on the Tata Steel hot-strip mill at Port Talbot.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9b4d8e845f7ecfaea22918a2867fde57&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9b4d8e845f7ecfaea22918a2867fde57&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2013 - 2018Partners:Firth Rixson Limited, SIEMENS PLC, University of Cambridge, University of Cambridge, Tata Motors (United Kingdom) +4 partnersFirth Rixson Limited,SIEMENS PLC,University of Cambridge,University of Cambridge,Tata Motors (United Kingdom),UNIVERSITY OF CAMBRIDGE,Arconic (United Kingdom),Siemens VAI,Jaguar Cars Limited and Land RoverFunder: UK Research and Innovation Project Code: EP/K018108/1Funder Contribution: 1,707,190 GBPManufacturing involves only three types of processes - adding, changing or removing material. 'Metal Bashing' - changing the shape of metal components without removal or additions - is easily over-looked or even derided as the 'ugly duckling' of manufacturing technology, yet continues to be central to UK manufacturing, and always will be: jet engines, medical scanners, cars, high-rise offices and contemporary industrial equipment all depend on metal forming, both to define component geometries and to create the properties such as strength and toughness which determine product performance. Despite great excitement over additive processes such as 3D printing, metal forming will never be replaced, because the high-performance properties of steel, wrought aluminium and other key metals can only be developed as a result of careful control of deformation and temperature over time. Globally we use 25 times more steel than any other metal - in the UK our consumption drives production of 500kg of steel per person per year - and every steel product has been shaped by several metal forming processes. Inevitably, metal forming processes are therefore central to the production of a third of all manufactured exports from the UK which are in total worth over £75bn. However, the tools required for forming metal components are custom-made for each application at great cost, so metal forming is often expensive unless used in mass production, yet the drivers for development of future high-value UK manufacturing require increased flexibility and smaller batch sizes without sacrificing either the accuracy or properties of metal parts. In the past twenty years, several research labs around the world have responded to this challenge and explored the design and development of novel flexible metal forming equipment. However these processes have largely failed to move from the lab into industrial use, due to a lack of precision and a failure to guarantee product microstructure and properties. Recent developments in sensors, actuators, control theory and mathematical modelling suggest that both problems could potentially be overcome by use of closed-loop control, and in work leading to this proposal, we have demonstrated the first online use of a stereo-vision camera in a flexible sheet metal forming process to provide the feedback needed to control the final shape of the sheet precisely. This has shown us that closed-loop control of forming is possible and valuable, but involves a trade-off between product quality, process flexibility and production speed. This proposal therefore brings together four disciplines, previously un-connected in the area of flexible forming, to explore this trade-off and develop the key knowledge underpinning future development of commercially valuable flexible metal forming equipment: mechanical design of novel equipment; control-engineering in both time and space; materials science of metal forming; fast mathematical process modelling. At the heart of our proposal is the ambition to link design, metallurgy and modelling to control engineering, in order to identify the opportunity for developing and applying flexible forming, and to demonstrate it in practice in four well focused case-studies. The proposal comes with £1.2m gearing, including support for five PhD students to work within the project, and substantial commitments of time and trials from Siemens Metals Technologies, Firth Rixson and Jaguar Land Rover. The outcomes of the work will be communicated through publications, demonstrations, workshops for both industry and academic developers, and through an edited book.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4a5c9f1ba036b651cdb5aa950700fd77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4a5c9f1ba036b651cdb5aa950700fd77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2012Partners:Sheffield Forgemasters Engineering Ltd, Niobium Products Company GmbH, TIMET UK LIMITED, Converteam Ltd, Corus +17 partnersSheffield Forgemasters Engineering Ltd,Niobium Products Company GmbH,TIMET UK LIMITED,Converteam Ltd,Corus,Alcan Research Center of Voreppe,Firth Rixson Forgings Ltd,University of Sheffield,Outokumpu Stainless Holdings Ltd,University of Sheffield,SIEMENS PLC,Alcan Research Center of Voreppe,Tata Steel UK,Siemens VAI,ConvaTec Ltd,General Electric (United Kingdom),[no title available],Titanium Metals Corporation (United Kingdom),Niobium Products Company GmbH,Sheffield Forgemasters Engineering Ltd,Firth Rixson Forgings Ltd,Outokumpu (United Kingdom)Funder: UK Research and Innovation Project Code: EP/F023464/1Funder Contribution: 4,529,690 GBPIMMPETUS (Institute for Microstructural and Mechanical Process Engineering: The University of Sheffield) was founded in 1997 to undertake truly integrated interdisciplinary research across the disciplines of systems, mechanical and metallurgical engineering, addressing key issues in the metals processing industry. Over the last ten years the unique inter-disciplinary research produced by IMMPETUS has secured national and international acclaim for its systems driven approach to process and property optimisation of a wide range of metals process routes. Using systems engineering we target and optimise experiments to develop basic physical metallurgy in specific areas where knowledge is incomplete, to inform model elicitation, testing and validation. For the complex industrial processes we investigate, there is insufficient basic knowledge to construct true through-process physically based models. In order to cover the intractable factors not adequately described by the existing physically based models, we use hybrid models that merge discrete data, knowledge-based and physically-based models in a unique manner to give unprecedented precision in predictive model capability. All the modelling is verified through the use of a world class array of experimental techniques. The proposal comprises 12 projects which have been constructed in conjunction with our industrial collaborators in order to answer the following questions: 1. How do we formulate a 'generic' framework for 'through-process' modelling to achieve 'right first-time' production of metals?2. Which of the metallurgical and thermomechanical variables affect the microstructure and therefore the final properties of metals, but are not yet fully described by existing models?3. How do causalities (deterministic behaviours) as well as uncertainties (heterogeneities, random behaviours) influence the processing and affect the final properties of metals?4. What are the specific modelling strategies 'best' suited for answering 1, 2, and 3 above?5. Using the elicited models in 4, can we identify the achievable properties for a given process route, and what to do if a particular property is not achievable?6. Using 5, how do we optimise the process route?The programme of work is presented as four themes, all of which are inter-dependent and interwoven. PHYSICAL SYSTEMS will be aimed at developing basic physical metallurgical understanding where knowledge is inadequate, in areas including microstructural heterogeneities, and process conditions that are dynamic and non-linear. In MODELLING SYSTEMS, the physical metallurgy, mechanical engineering and systems engineering will be fully integrated, both through the development of new modelling approaches, and the coupling of existing state-of-the-art modelling that in itself produces new methodologies. PROCESS SIMULATION will involve the upscaling of focused laboratory experiments to accurately and completely simulate the relevant industrial process routes and validate them through appropriate mill trials. SYSTEMS OPTIMISATION will act as a powerful vehicle for integrating these themes and via a careful tuning of model structures/parameters will be core to our technology transfer to our will target specific industrial sponsors and to the wider academic community.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ffc99e8021831d1cb2205cd61866167e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ffc99e8021831d1cb2205cd61866167e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2013 - 2015Partners:Jaguar Land Rover (United Kingdom), BP (United States), RWE (United Kingdom), Dept for Sci, Innovation & Tech (DSIT), Furniture Recycling Network +36 partnersJaguar Land Rover (United Kingdom),BP (United States),RWE (United Kingdom),Dept for Sci, Innovation & Tech (DSIT),Furniture Recycling Network,Department of Energy and Climate Change,Green Alliance,BP British Petroleum,CCC,SIEMENS PLC,Wrap (United Kingdom),Kyocera (United Kingdom),Nottingham Trent University,University of Leeds,Furniture Recycling Network,Arup Group,Dept for Business, Innovation and Skills,DECC,NTU,JAGUAR LAND ROVER,RWE npower,UNIVERSITY OF CAMBRIDGE,Green Alliance,Tata Motors (United Kingdom),Dept for Env Food & Rural Affairs DEFRA,University of Cambridge,Tata Steel,Kyocera Document Solutions (U.K.) Ltd,University of Leeds,Arup Group (United Kingdom),Department for Environment Food and Rural Affairs,Ministry of Housing, Communities and Local Government,University of Cambridge,Committee on Climate Change,Department for Business, Energy and Industrial Strategy,Tata Steel (India),Siemens VAI,Dept for Env Food & Rural Affairs DEFRA,Arup Group Ltd,Communities and Local Government,WRAPFunder: UK Research and Innovation Project Code: EP/K011774/1Funder Contribution: 6,173,070 GBPOne third of the world's energy is used in industry to make products - the buildings, infrastructure, vehicles, capital equipment and household goods that sustain our lifestyles. Most of this energy is needed in the early stages of production to convert raw materials, such as iron ore or trees, into stock materials like steel plates or reels of paper and because these materials are sold cheaply, but use a lot of energy, they are already extremely energy efficient. Therefore, the key materials with which we create modern lifestyles - steel, cement, plastic, paper and aluminium in particular - are the main 'carriers' of industrial energy, and if we want to make a big reduction in industrial energy use, we need to reduce our demand for these materials. In the UK, our recent history has led to closure of much of our capacity to make these materials, and although this has led to reductions in emissions occurring on UK territory, in reality our consumption of materials has grown, and the world's use of energy and emission of greenhouse gases has risen as our needs are met through imports. The proposed UK INDEMAND Centre therefore aims to enable delivery of significant reductions in the use of both energy and energy-intensive materials in the Industries that supply the UK's physical needs. To achieve this, we need to understand the operation and performance of the whole material and energy system of UK industry; we need to understand better our patterns of consumption both in households, and in government and industry purchasing, particularly related to replacement decisions; we need to look for opportunities to innovate in products, processes and business models to use less material while serving the same need; and we need to identify the policy, business and consumer triggers that would lead to significant change while supporting UK prosperity. The proposer team have already developed broad-ranging work aiming to address this need, in close collaboration with industry and government partners: at Cambridge, the WellMet2050 project has opened the door to recognising Material Efficiency as a strategy for saving energy and reducing emissions, and established a clear trajectory for business growth with reduced total material demand; in Bath, work on embodied energy and emissions has created a widely adopted database of materials, and the Transitions and Pathways project has established a clear set of policy opportunities for low carbon technologies that we can now apply to demand reduction; work on energy and emissions embodied in trade at Leeds has shown how UK emissions and energy demand in industry have declined largely due to a shift of production elsewhere, while the true energy requirements of our consumption have grown; work on sustainable consumption at Nottingham Trent has shown how much of our purchased material is discarded long before it is degraded, looked at how individuals define their identity through consumption, and begun to tease out possible interventions to influence these wasteful patterns of consumption. The proposal comes with over £5m of committed gearing, including cash support for at least 30 PhD students to work with the Centre and connect its work to the specific interests of consortium partners. The proposal is also strongly supported by four key government departments, the Committee on Climate Change, and a wide network of smaller organisations whose interests overlap with the proposed Centre, and who wish to collaborate to ensure rich engagement in policy and delivery processes. Mechanisms, including a Fellows programme for staff exchange in the UK and an International Visiting Fellows programme for global academic leaders, have been designed to ensure that the activities of the Centre are highly connected to the widest possible range of activities in the UK and internationally which share the motivation to deliver reductions in end-use energy demand in Industry.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::aaa8760ac10210d30f6d8b34ad3e1a71&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::aaa8760ac10210d30f6d8b34ad3e1a71&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2014Partners:Arup Group (United Kingdom), Celsa Steel UK, INNOVAL, Tata Steel (United Kingdom), Crown Packaging (United Kingdom) +48 partnersArup Group (United Kingdom),Celsa Steel UK,INNOVAL,Tata Steel (United Kingdom),Crown Packaging (United Kingdom),University of Sheffield,Norwegian University of Science and Technology,NAMTEC,Ramboll (United Kingdom),RAM,Danieli (United Kingdom),Jaguar Land Rover (United Kingdom),Tata Motors (United Kingdom),University of Cambridge,Boeing United Kingdom Limited,Network Rail Ltd,The Welding Institute,SIEMENS PLC,Alcoa Europe Flat Rolled Products,Celsa Steel UK,IAI,Innoval Technology (United Kingdom),Massachusetts Institute of Technology,Arup Group Ltd,Cambridge Programme for Industry,JAGUAR LAND ROVER,Alcoa (United Kingdom),Network Rail,FORD MOTOR COMPANY LIMITED,University of Cambridge,Short and Associates,Caterpillar Limited (UK),Short and Associates,Arup Group,Corus UK,Boeing (United Kingdom),Massachusetts Institute of Technology,Novelis Global Technology Centre (NGTC),NTNU Norwegian Uni of Science & Tech,The Welding Institute,UNIVERSITY OF CAMBRIDGE,Massachusetts Institute of Technology,Danieli Davy Distington Ltd,Caterpillar Inc,Crown Packaging Plc,Novelis (Canada),University of Oxford,International Aluminium Institute,TU Dortmund University,Siemens VAI,Tata Steel (United Kingdom),Ford Motor Company (United Kingdom),NTNU Nor Uni of Sci & Tech (Remove)Funder: UK Research and Innovation Project Code: EP/G007217/1Funder Contribution: 1,565,450 GBPAchieving the carbon target for steel and aluminium requires an industry-wide transformation which will result in new business models and new metal flows. The proposal aims to identify credible scenarios for achieving the target, to specify the barriers to achieving them, and to define the economic and policy measures required to drive change. In parallel, the proposal aims to deliver basic technology research that will allow more options for a future materially efficient steel and aluminium economy.It is widely agreed that a cut of at least 60% in global greenhouse gas emissions will be required by 2050 to limit the adverse effects of climate change. Steel and aluminium are responsible for 8% of global energy related emissions. Industry efforts to date have focused on reducing energy in primary production, and recycling metal by melting and re-casting. However, demand for both steel and aluminium is forecast to double, recycling rates are already around 60-70% and the most optimistic projections for energy efficiency improvements deliver only 30% reduction per unit output of material. Efficiency improvements alone are not sufficient, but the 2050 target can be achieved if, in addition to existing measures, energy used in converting ingots to products is halved, the volume of metal used in each application is reduced, and a substantial fraction of metal is re-used without melting. In pursuing this strategy, this proposal is aligned with the EPSRC strategic theme on energy demand reduction.The need for clarity about the physical implications of responding to the carbon target has become a major priority in the metal producing and using industry. Without the work described in this proposal, it is not possible for the government, industry and the public to understand and negotiate the choices they must collectively make in order to meet the carbon target in this sector. Accordingly, this proposal comes with support of 2 million in committed effort from 20 global companies, all with operations in the UK. The business activities of the consortium span primary metal production, conventional recycling, equipment manufacture, road transport, construction, aerospace, packaging and knowledge transfer.The work of the fellowship will be split between business analysis and technology innovation themes. The business analysis theme will identify future scenarios, barriers and a roadmap for meeting the target. This work will include specific analysis of future metal flows, application of a global economic model and the analysis of policy measures. The technology innovation theme aims to optimize the requirements for metal use through novel manufacturing process design, to increase material and energy efficiency in forming and finishing, and to develop solid-state closed-loop recycling for metals. Both themes will be developed in collaboration with the consortium, and will also draw on an international scientific panel and a cross-disciplinary advisory panel in Cambridge.The work will lead to two major reports for wide distribution, direct dissemination into the partner companies, training courses, technology assessments and physical demonstrations of the technology innovations. These will include a demonstration for public engagement. The results of the work on steel and aluminium will be used to stimulate interest among business leaders in other sectors, and will form the basis for a longer term Centre for Low Carbon Materials Processing in Cambridge.The Leadership Fellowship offers a unique and timely opportunity to undertake the basic research required to drive a step-change in material efficiency, by demonstrating that a different flow of metal through the global economy is technically and economically possible, and by inspiring and informing those who can influence change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8c9146d685268e7b62921bdea61a5c8e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8c9146d685268e7b62921bdea61a5c8e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu