
VARTA INNOVATION GMBH
VARTA INNOVATION GMBH
15 Projects, page 1 of 3
Open Access Mandate for Publications and Research data assignment_turned_in Project2019 - 2022Partners:CRF, TUM, VMI, Polytechnic University of Milan, Wavestone +11 partnersCRF,TUM,VMI,Polytechnic University of Milan,Wavestone,FZJ,CEA,SGL Carbon (Germany),CERTH,AC,VITO,NANOMAKERS,VARTA INNOVATION GMBH,SOLVAY,FUNDACION CIDETEC,NTNUFunder: European Commission Project Code: 814389Overall Budget: 7,975,190 EURFunder Contribution: 7,975,190 EURKnowledge-based improvements of Li-ion battery cost, performance, recyclabiKnowledge-based improvements of Li-ion battery cost, performance, recyclability and safety are needed to enable electric vehicles to rapidly gain market share and reduce CO2 emissions. SPIDER’s advanced, low-cost (75 €/kWh by 2030) battery technology is predicted to bring energy density to ~ 450 Wh/kg by 2030 and power density to 800 W/kg. It operates at a lower, and thus safer, voltage, which enables the use of novel, highly conductive and intrinsically safe liquid electrolytes. Safety concerns will be further eliminated (or strongly reduced), as thermal energy dissipation will be reduced to 4 kW/kg, and thermal runaway temperature increased to over 200°C. Moreover, SPIDER overcomes one of the main Li-ion ageing mechanisms for silicon based anodes: notably, the loss of cyclable lithium, which should increase lifetime to 2000 cycles by 2022 for first life applications with further usefulness up to 5000 cycles in second life (stationary energy storage). In addition, SPIDER’s classic cell manufacturing process with liquid electrolyte will be readily transferable to industry, unlike solid electrolyte designs, which still require the development of complex manufacturing processes. Finally, SPIDER batteries will be designed to be 60% recyclable by weight, and a dedicated recycling process will be developed and evaluated during SPIDER. In addition, SPIDER materials significantly reduce the use of critical raw materials. Finally, four SPIDER partners are identified by the European Battery Alliance as central and strategic for the creation of the needed European battery value chain: SGL, NANO, VMI & SOLVAY. In conclusion, SPIDER proposes a real breakthrough in battery chemistry that can be readily adopted within a sustainable, circular economy by a competitive, European battery value chain to avoid foreign market dependence and to capture the emerging 250 billion € battery market in Europe.
more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2019 - 2024Partners:CEA, VUB, Uppsala University, VMI, VARTA INNOVATION GMBH +15 partnersCEA,VUB,Uppsala University,VMI,VARTA INNOVATION GMBH,Varta Microbattery (Germany),CIC ENERGIGUNE,FUNDACION CIDETEC,Torrecid (Spain),Uniresearch,VDL STEELWELD BV,SOLVAY,EUROPEAN ASSOCIATION FOR STORAGE OF ENERGY,IFA,Haldor Topsoe (Denmark),MIMI TECH GMBH,Avesta,LEITAT,VARTA Storage GmbH,BOUYGUES ENERGIES & SERVICESFunder: European Commission Project Code: 875126Overall Budget: 7,957,800 EURFunder Contribution: 7,957,800 EURThe project main goal is to develop new generation batteries for battery storage with a modular technology, suitable for different applications and fulfilling the increasing need of decentralised energy production and supply for private households and industrial robotised devices.. New materials and components will be developed and optimised to achieve longer lifetime (up to 10,000 cycles depending on the material selected), lower costs (down to 0.03 €/kWh/cycle), improved safety and more efficient recycling (>50%). The expected results will strengthen EU competitiveness in advanced materials and nanotechnologies and the related battery storage value chain, preparing European industry to be competitive in these new markets. This will be achieved by using high capacity anodes coupled with cobalt free cathode and with a very safe gel polymer electrolyte separator, leveraging partners’ knowledge in advanced materials. This new technology will be developed up to a TRL 6 (large prismatic cell ESP-Cell 30Ah) at the end of the project, producing these novel high voltage high capacity batteries close to practical applications. Further, the proposed solution will allow Europe to become more independent from raw material and the feasibility of a metal recovery process will be deeply investigated and recommendations for future application will be made. To achieve the ambitious targets, the CoFBAT project covers the entire value chain, bringing together industrial experts in material development and battery science together with engineering companies and institutes and battery producers and integrators.
more_vert Open Access Mandate for Publications assignment_turned_in Project2020 - 2023Partners:FOUNDATION FOR RESEARCH AND TECHNOLOGYHELLAS, Bundeswehr University Munich, 3SUN S.R.L., UNIPD, University of Regensburg +190 partnersFOUNDATION FOR RESEARCH AND TECHNOLOGYHELLAS,Bundeswehr University Munich,3SUN S.R.L.,UNIPD,University of Regensburg,IDIBAPS,CIC ENERGIGUNE,University of Bremen,UNIVERSITE DE LILLE,CSIC,G.TEC MEDICAL ENGINEERING GMBH,IHP GMBH,BSL,SIXONIA TECH,TUW,NSN,HEIDELBERG MATERIALS ITALIA CEMENTI SPA,University of Nottingham,CNRS,CIBER,UNISA,ProGnomics Ltd.,Emberion Ltd,EAB,PIXIUM VISION,Polytechnic University of Milan,Trinity College Dublin, Ireland,SUSS MicroTec Lithography GmbH,Chalmers University of Technology,NanOsc AB,AMO GMBH,DI,LNE,TU Delft,UCL,BEDIMENSIONAL SPA,TEKNOLOGIAN TUTKIMUSKESKUS VTT OY,CAU,Varta Microbattery (Germany),Evonik Nutrition & Care GmbH,GRUPO ANTOLIN-INGENIERIA SA,MAGNA ELECTRONICS SWEDEN AB,MCS,Infineon Technologies (Germany),HUN-REN CENTRE FOR ENERGY RESEARCH,AIRBUS OPERATIONS SL,M-Solv,University of Sheffield,MPG,STMicroelectronics (Switzerland),BMW Group (Germany),INSTITUTO NACIONAL DE INVESTIGACION Y TECNOLOGIA AGRARIA Y ALIMENTARIA OA MP,UCLM,ABB AB,INBRAIN NEUROELECTRONICS SL,MICRO RESIST TECHNOLOGY GESELLSCHAFT FUER CHEMISCHE MATERIALIEN SPEZIELLER PHOTORESISTSYSTEME MBH,KIT,Plastic Logic (United Kingdom),VARTA INNOVATION GMBH,OINT,GRAPHENE-XT SRL,LEONARDO,Carlos III University of Madrid,BMW (Germany),Singulus (Germany),CEA,UMINHO,RWTH,VRS,CRAYONANO AS,GRAPHMATECH AB,CRF,UCL,DIPC,AALTO,Printed Electronics Ltd,Imperial,INSERM,ICFO,UniPi,UZH,CIC biomaGUNE,confinis,LHT,AIRBUS HELICOPTERS,Siemens (Germany),QMUL,FNSR,Nanesa,AIXTRON LIMITED,IAW,ARCELORMITTAL,UPSud,QURV TECHNOLOGIES SL,IMech-BAS,Naturality Research & Development,CNR,CHALMERS INDUSTRITEK,EMBERION OY,TECNIUM,UNISTRA,WUT,Mellanox Technologies (Israel),NOKIA UK LIMITED,CNIT,University of Rome Tor Vergata,TU/e,TEMAS AG TECHNOLOGY AND MANAGEMENT SERVICES,INDORAMA VENTURES FIBERS GERMANY GMBH,Bundeswehr,AVANZARE,VMI,SUSS MicroTec Photomask Equipment,TECNALIA,BOKU,University of Ulm,FSU,University of Manchester,AIXTRON SE,UT,BIOAGE,BMVg,Mellanox Technologies (United States),University of Groningen,ICN2,EVONIK CREAVIS GMBH,FAU,NanoTechLab,FHG,ITME,TUD,FIOH,NAWATECHNOLOGIES,IMEC,DALLARA AUTOMOBILI SPA,INTER-QUIMICA,DTU,SISSA,University of Zaragoza,Sonaca (Belgium),AIRBUS DEFENCE AND SPACE GMBH,Composites Evolution (United Kingdom),HCPB,UAB,NOVALIA LIMITED,NOKIA SOLUTIONS AND NETWORKS ITALIA SPA,MEDICA SPA,NPL MANAGEMENT LIMITED,SCHAFFHAUSEN INSTITUTE OF TECHNOLOGY AG,HITACHI ENERGY SWEDEN AB,BASF SE,EVONIK DEGUSSA GmbH,IMDEA NANO,Umeå University,University of Ioannina,AMALYST,TME,Airbus (Netherlands),ULB,UNITS,GRAPHENEA SEMICONDUCTOR SL,IIT,INTERNACIONAL DE COMPOSITES SA,EPFL,G TEC,EGP,Technion – Israel Institute of Technology,SPAC SPA,ICON LIFESAVER LIMITED,BRETON SPA,KI,SIEC BADAWCZA LUKASIEWICZ - INSTYTUT MIKROELEKTRONIKI I FOTONIKI,ESF,BARNICES Y PINTURAS MODERNAS SOCIEDAD ANONIMA,UNIGE,BRUNO BALDASSARI & FRATELLI SPA,Sorbonne University,UH,USTL,Universität Augsburg,THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE,IDIBAPS-CERCA,University of Warwick,CIC nanoGUNE,Lancaster University,PHI-STONE AG,Philipps-University of Marburg,POLYMEM,CAMBRIDGE RAMAN IMAGING LTD,EPFZ,EMPA,TEMAS SOLUTIONS GMBH,ΕΛΜΕΠΑ,FIDAMC,THALESFunder: European Commission Project Code: 881603Overall Budget: 149,703,008 EURFunder Contribution: 149,703,008 EURThis proposal describes the third core project of the Graphene Flagship. It forms the fourth phase of the FET flagship and is characterized by a continued transition towards higher technology readiness levels, without jeopardizing our strong commitment to fundamental research. Compared to the second core project, this phase includes a substantial increase in the market-motivated technological spearhead projects, which account for about 30% of the overall budget. The broader fundamental and applied research themes are pursued by 15 work packages and supported by four work packages on innovation, industrialization, dissemination and management. The consortium that is involved in this project includes over 150 academic and industrial partners in over 20 European countries.
more_vert Open Access Mandate for Publications assignment_turned_in Project2020 - 2023Partners:INSA, CEA, VARTA INNOVATION GMBH, CNRS, VMI +5 partnersINSA,CEA,VARTA INNOVATION GMBH,CNRS,VMI,BMW (Germany),University of Aveiro,BMW Group (Germany),Infineon Technologies (Germany),FAURECIAFunder: European Commission Project Code: 955930Overall Budget: 3,999,520 EURFunder Contribution: 3,999,520 EURThe ambition of INSTABAT is to monitor in operando key parameters of a Li-ion battery cell, in order to provide higher accuracy States of Charge, Health, Power, Energy and Safety (SoX) cell indicators, and thus allowing to improve the safety and the Quality, Reliability and Life (QRL) of batteries. To achieve this goal, INSTABAT will develop a proof of concept of smart sensing technologies and functionalities, integrated into a battery cell and capable of: • performing reliable in operando monitoring (time- and space-resolved) of key parameters (temperature and heat flow; pressure; strain; Li+ concentration and distribution; CO2 concentration; “absolute” impedance, potential and polarization) by means of: (i) four embedded physical sensors (optical fibers with Fiber Bragg Grating and luminescence probes, reference electrode and photo-acoustic gas sensor), (ii) two virtual sensors (based on electro-chemical and thermal reduced models), • correlating the evolution of these parameters with the physico-chemical degradation phenomena occurring at the heart of the battery cell, • improving the battery functional performance and safety, thanks to enhanced BMS algorithms providing in real-time higher accuracy SoX cell indicators (taking the measured and estimated parameters into consideration). Main results will be: (1) proof of concept of multi-sensor platform (cell prototype equipped with physical/virtual sensors, and associated BMS algorithms providing SoX cell indicators in real-time); (2) demonstration of higher accuracy for SoX cell indicators; (3) demonstration of improvement of cell functional performance and safety through two use cases for EV applications; (4) techno-economic feasibility study (manufacturability, adaptability to other cell technologies...). INSTABAT smart cells will open new horizons to improve cell use and performances (e.g. by reducing ageing, allowing the decrease of safety margins, triggering self-healing, facilitating second life, etc.).
more_vert Open Access Mandate for Publications assignment_turned_in Project2020 - 2024Partners:UCLM, SIXONIA TECH, NSN, AMALYST, University of Rome Tor Vergata +186 partnersUCLM,SIXONIA TECH,NSN,AMALYST,University of Rome Tor Vergata,INDORAMA VENTURES FIBERS GERMANY GMBH,AVANZARE,UH,UNISTRA,AALTO,Imperial,INSERM,ICFO,IIT,INTERNACIONAL DE COMPOSITES SA,LNE,TU Delft,Emberion Ltd,UNISA,Trinity College Dublin, Ireland,Infineon Technologies (Germany),SCHAFFHAUSEN INSTITUTE OF TECHNOLOGY AG,NanOsc AB,STMicroelectronics (Switzerland),INBRAIN NEUROELECTRONICS SL,Siemens (Germany),MICRO RESIST TECHNOLOGY GESELLSCHAFT FUER CHEMISCHE MATERIALIEN SPEZIELLER PHOTORESISTSYSTEME MBH,TUD,ARCELORMITTAL,FIOH,UPSud,QMUL,UT,FNSR,BIOAGE,BMVg,AIXTRON LIMITED,Mellanox Technologies (United States),IMEC,DALLARA AUTOMOBILI SPA,IAW,UniPi,EMBERION OY,HCPB,ABB AB,QURV TECHNOLOGIES SL,SUSS MicroTec Photomask Equipment,MCS,HUN-REN CENTRE FOR ENERGY RESEARCH,EPFL,TECNALIA,CNR,OINT,SISSA,KIT,UCL,BOKU,IDIBAPS,Plastic Logic (United Kingdom),LEONARDO,CIC ENERGIGUNE,ULB,AIRBUS OPERATIONS SL,UMINHO,UNIPD,University of Regensburg,UNITS,G.TEC MEDICAL ENGINEERING GMBH,CIC biomaGUNE,ICON LIFESAVER LIMITED,HEIDELBERG MATERIALS ITALIA CEMENTI SPA,UAB,DI,BASF SE,CRF,GRAPHENE-XT SRL,EVONIK DEGUSSA GmbH,CAU,CEA,Varta Microbattery (Germany),GRUPO ANTOLIN-INGENIERIA SA,RWTH,BRETON SPA,IMDEA NANO,FIDAMC,CSIC,VRS,NAWATECHNOLOGIES,SUSS MicroTec Lithography GmbH,Chalmers University of Technology,THALES,UCL,DIPC,FOUNDATION FOR RESEARCH AND TECHNOLOGYHELLAS,Bundeswehr University Munich,LHT,AIRBUS HELICOPTERS,Philipps-University of Marburg,MAGNA ELECTRONICS SWEDEN AB,3SUN S.R.L.,Printed Electronics Ltd,UZH,NOKIA UK LIMITED,confinis,TU/e,Nanesa,Bundeswehr,VMI,USTL,Universität Augsburg,EAB,BMW Group (Germany),PIXIUM VISION,THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE,IDIBAPS-CERCA,VARTA INNOVATION GMBH,University of Sheffield,MPG,Umeå University,University of Ioannina,IHP GMBH,BSL,University of Bremen,TECNIUM,UNIVERSITE DE LILLE,University of Manchester,INSTITUTO NACIONAL DE INVESTIGACION Y TECNOLOGIA AGRARIA Y ALIMENTARIA OA MP,TME,BEDIMENSIONAL SPA,AMO GMBH,Polytechnic University of Milan,University of Groningen,TEKNOLOGIAN TUTKIMUSKESKUS VTT OY,Carlos III University of Madrid,TUW,Singulus (Germany),University of Warwick,ICN2,CRAYONANO AS,GRAPHMATECH AB,BMW (Germany),University of Ulm,AIRBUS DEFENCE AND SPACE GMBH,University of Nottingham,POLYMEM,CNRS,CIBER,ProGnomics Ltd.,Composites Evolution (United Kingdom),KI,SIEC BADAWCZA LUKASIEWICZ - INSTYTUT MIKROELEKTRONIKI I FOTONIKI,ESF,BRUNO BALDASSARI & FRATELLI SPA,M-Solv,MEDICA SPA,FSU,AIXTRON SE,NPL MANAGEMENT LIMITED,CAMBRIDGE RAMAN IMAGING LTD,EPFZ,TEMAS SOLUTIONS GMBH,ΕΛΜΕΠΑ,CHALMERS INDUSTRITEK,FHG,ITME,NanoTechLab,CNIT,INTER-QUIMICA,DTU,University of Zaragoza,NOVALIA LIMITED,NOKIA SOLUTIONS AND NETWORKS ITALIA SPA,IMech-BAS,Naturality Research & Development,FAU,Sonaca (Belgium),GRAPHENEA SEMICONDUCTOR SL,SPAC SPA,Lancaster University,PHI-STONE AG,EGP,Airbus (Netherlands),EMPA,WUT,Mellanox Technologies (Israel),G TEC,UNIGE,Sorbonne University,CIC nanoGUNE,Technion – Israel Institute of Technology,BARNICES Y PINTURAS MODERNAS SOCIEDAD ANONIMAFunder: European Commission Project Code: 952792Overall Budget: 20,000,000 EURFunder Contribution: 20,000,000 EURThe 2D Experimental Pilot Line (2D-EPL) project will establish a European ecosystem for prototype production of Graphene and Related Materials (GRM) based electronics, photonics and sensors. The project will cover the whole value chain including tool manufacturers, chemical and material providers and pilot lines to offer prototyping services to companies, research centers and academics. The 2D-EPL targets to the adoption of GRM integration by commercial semiconductor foundries and integrated device manufacturers through technology transfer and licensing. The project is built on two pillars. In Pillar 1, the 2D-EPL will offer prototyping services for 150 and 200 mm wafers, based on the current state of the art graphene device manufacturing and integration techniques. This will ensure external users and customers are served by the 2D-EPL early in the project and guarantees the inclusion of their input in the development of the final processes by providing the specifications on required device layouts, materials and device performances. In Pillar 2, the consortium will develop a fully automated process flow on 200 and 300 mm wafers, including the growth and vacuum transfer of single crystalline graphene and TMDCs. The knowledge gained in Pillar 2 will be transferred to Pillar 1 to continuously improve the baseline process provided by the 2D-EPL. To ensure sustainability of the 2D-EPL service after the project duration, integration with EUROPRACTICE consortium will be prepared. It provides for the European actors a platform to develop smart integrated systems, from advanced prototype design to small volume production. In addition, for the efficiency of the industrial exploitation, an Industrial Advisory Board consisting mainly of leading European semiconductor manufacturers and foundries will closely track and advise the progress of the 2D-EPL. This approach will enable European players to take the lead in this emerging field of technology.
more_vert
chevron_left - 1
- 2
- 3
chevron_right