
WSP Civils (United Kingdom)
WSP Civils (United Kingdom)
28 Projects, page 1 of 6
assignment_turned_in Project2010 - 2013Partners:WSP UK LIMITED, [no title available], BAE Systems (Sweden), University of Sheffield, WSP Civils (United Kingdom) +1 partnersWSP UK LIMITED,[no title available],BAE Systems (Sweden),University of Sheffield,WSP Civils (United Kingdom),BAE Systems (United Kingdom)Funder: UK Research and Innovation Project Code: EP/H009825/1Funder Contribution: 611,078 GBPThe design of floor structures supporting human occupants is increasingly being governed by vibration serviceability criteria. This is a result of increasing slenderness of modern floor systems and the trend for fewer partitions and other non-structural elements that otherwise would provide damping. At the same time, demands for better vibration performance are increasing. Occupants of high quality commercial, residential and hospital buildings will complain when excessive levels of vibration are felt. Also, many new items of scientific, healthcare and manufacturing equipment are sensitive to even very low levels of vibration and the structures that support them must be designed to ensure an appropriate vibration environment.To address these issues, the proposed research will investigate the use of active vibration control (AVC) to improve the vibration performance of floor structures under human-induced loading. This technology has already been shown by the PI to be feasible but it requires substantial further research to be established as a practical option for structural engineers and building developers. Hence, the key aims of the proposed research are:- To identify and develop control strategies suitable for active control of human-induced vibrations in floors and to evaluate improvements in floor vibration performance through simulations, laboratory testing and field installation. A full spectrum of complexity will be investigated, ranging from simple single-input-single-output collocated systems to much more complex adaptive model-based systems using multiple sensors and actuators.- To develop inertial actuation technology appropriate for AVC on floor structures, and hence to demonstrate that an AVC system can be `packaged' to be affordable, compact, robust and reliable. These are key technological hurdles that must be addressed if the benefits of AVC systems are to be realised in the highly commercial civil engineering sector.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c137d0ec36d8c6640abe5261948ffbca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c137d0ec36d8c6640abe5261948ffbca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2026Partners:WSP Group plc UK, Tracsis plc, WSP Civils (United Kingdom), TU Delft, ETAP Automation Ltd +2 partnersWSP Group plc UK,Tracsis plc,WSP Civils (United Kingdom),TU Delft,ETAP Automation Ltd,University of Birmingham,EneRailFunder: UK Research and Innovation Project Code: EP/Y003136/1Funder Contribution: 165,732 GBPThe British railway transport demand is forecast to increase by around 40% by 2040, as a result of population growth, socio-economic globalisation and sustainable mobility decarbonisation. The enhancement of capacity and efficiency is the major challenge to the railway network, which is already near saturation conditions. Automatic Train Operation (ATO) with advanced signalling systems, such as Moving Block and Virtual Coupling, have been investigated to reduce train separation distances and increase the infrastructure capacity. However, more trains with advanced operation systems affect the performance of traction power supply systems, For example, the synchronisation of train acceleration and braking operation increases the peak power and reduces the energy efficiency due to regenerative braking energy loss. The current technological capabilities do not permit accurate and real-time interaction assessment between the train operation and power networks. Therefore, it is important to develop a holistic approach to improving railway capacity and efficiency. This collaborative project will exchange the international partners' knowledge in train operation and traction power systems and investigate the flow mechanism between these two distinct systems. A digital twin with adaptive timescales and real-time data feeding will be developed to describe the interactions of the connected and coordinated systems. The outputs from the digital twin replicate the characteristics of real-world railway networks precisely. The multi-scenario simulation studies analyse the impact of various system design and control variables on performance, such as infrastructure capacity, efficiency and cost. The system performance will be evaluated and compared with the existing system. This project will build international partnerships through bilateral visits, and engagement workshops with global academic and industry partners. The project will also provide a roadmap for future collaboration on optimising the railway capacity and efficiency for decarbonisation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d64428831bb961c1812dc8c4352bb797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d64428831bb961c1812dc8c4352bb797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2011 - 2013Partners:WSP Buildings Ltd, University of Sheffield, Jacobs Engineering UK Ltd., WSP Buildings Ltd, Jacobs UK Limited +3 partnersWSP Buildings Ltd,University of Sheffield,Jacobs Engineering UK Ltd.,WSP Buildings Ltd,Jacobs UK Limited,University of Sheffield,[no title available],WSP Civils (United Kingdom)Funder: UK Research and Innovation Project Code: EP/J004081/1Funder Contribution: 1,057,000 GBPThere is an inexorable trend for civil engineering structures to become more slender and lightweight, as engineers strive to design more efficient structures with reduced economic cost, reduced carbon footprint and increased flexibility of usage. Unfortunately, due to their reduced mass and stiffness these structures are inherently lively and there is a desperate need for advanced technologies that are capable of ensuring satisfactory vibration performance when people walk, run and jump on them. There are two key issues to address: (1) Technologies are required to deal with existing vibration problems, which are increasingly and widely observed in structures such as floors, footbridges, sports stadia and staircases. Currently available technologies are insufficient to deal with the majority of these problems, which means that extensive and low-tech structural modification schemes have to be employed that are both expensive and highly disruptive. (2) If the ambitions of structural engineers for ever more slender and efficient structures are to be realised, it will be necessary to 'design in' advanced methods of vibration control when developing new structures. This is because many contemporary structures are already being designed at their limits of vibration acceptability. Unfortunately, the new technologies required for this transformative design approach are not yet available. In the last five years, the applicant and his team have carried out exciting research into active control of vibration in floor structures, in which large reductions in vibration have been achieved that are not possible using other floor control technologies. They have also demonstrated that significant material savings may be made using this technology, which has the potential to significantly reduce the carbon footprint of new buildings. This is the main vision for this fellowship and the future, where advanced and intelligent vibration control strategies will become commonplace in structures subject to human dynamic loading. However, a solution that works for floor vibrations from a single person walking is not necessarily going to work for a sports stadium with many thousands of people jumping during a rock concert. Hence, what is required is a required is a complete 'suite' of control technologies, from which the most appropriate solution may be chosen and implemented for any particular vibration problem. In these days of active noise cancelling headphones and semi-active vehicle suspension systems, it is time for these advanced technologies to find their place in civil structural engineering, to solve the unique problems of human-induced vibration. Hence, in this research a comprehensive framework of technologies will be developed, so that the most appropriate technologies may be selected for a particular application. This will be the first time in the world that such a holistic approach has been taken to mitigation of human-induced vibrations. Fundamental research into a range of these technologies, including active, semi-active and hybrid vibration control techniques will be carried out to prove their viability in the civil engineering sector through analytical modelling, laboratory testing and in-the-field implementation. Finally, extensive industrial liaison and public outreach activities are planned to ensure the take-up of these technologies, which is the key way in which this research will benefit UK plc.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::aeffa0a47546758f88168f9b76436ee4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::aeffa0a47546758f88168f9b76436ee4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2019Partners:Arup Group Ltd, Strainstall UK Ltd, WSP Buildings Ltd, University of Liverpool, University of Liverpool +5 partnersArup Group Ltd,Strainstall UK Ltd,WSP Buildings Ltd,University of Liverpool,University of Liverpool,CPP Wind,WSP Civils (United Kingdom),Strainstall UK Ltd,JIANGSU Transportation Institute,Arup Group (United Kingdom)Funder: UK Research and Innovation Project Code: EP/N017897/1Funder Contribution: 567,769 GBPThe modal properties of a structure include primarily its natural frequencies, damping ratios and mode shapes. Their information is indispensable for design against dynamic loads such as wind, earthquake and human excitation. Uncertainty arises due to the lack of knowledge and modelling limitations and this generally increases project risk. Modal identification has long been recognised as an effective means for uncertainty mitigation in structural dynamics. Theoretically it is possible to identify the modal properties based on only the 'output' vibration response of structures without knowing the 'input' excitation. This type of test, called 'ambient vibration test', has now become the primary and most sustainable means for its high implementation feasibility, robustness and economy. In the absence of loading information and with data collected under uncontrolled field environment, however, the identification results have significant variability and low repeatability. This has limited the economic benefit of ambient vibration tests and undermined the scientific significance of their identification results. This has been well-recognised but there has been no quantitative account for its origin or how to control it. This project aims at developing a comprehensive fundamental methodology for quantifying and managing the uncertainties of the modal properties of civil engineering structures identified from ambient vibration data. At the scientific core is a set of 'uncertainty laws', analogous to the laws of large numbers of data in classical probability, that expresses fundamentally the identification uncertainty of modal properties explicitly and quantitatively in terms of test configurations such as measurement noise, environmental load intensity and the number and location of sensors. Due to complexity of the problem, it is unlikely to obtain insightful results for general situations. The project aims at fundamental expressions with insights governing the dominant behaviour of the remaining identification uncertainty under realistic situations. The project objective is achieved through a comprehensive programme comprising fundamental theory development, extensive verification with synthetic, laboratory and field data, and knowledge transfer with industry. A practical guide for planning and performing ambient vibration test shall be produced incorporating scientific findings of the project and experience of the team members with input from industry partners.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::32610d195e439866f3c257652eb5bc46&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::32610d195e439866f3c257652eb5bc46&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2017Partners:RSSB, University of Birmingham, L-3 TRL Technology, WSP Parsons Brinckerhoff Ltd UK, University of Birmingham +7 partnersRSSB,University of Birmingham,L-3 TRL Technology,WSP Parsons Brinckerhoff Ltd UK,University of Birmingham,Parsons Brinckerhoff Ltd UK,L3Harris (United Kingdom),Rail Safety and Standards Board (United Kingdom),National Grid (United Kingdom),National Grid PLC,WSP Civils (United Kingdom),L-3 TRL TechnologyFunder: UK Research and Innovation Project Code: EP/M002845/1Funder Contribution: 395,222 GBPIndustrial Control Systems underpin almost all aspects of life in the UK, the power network operated by the National Grid and the rail network, which is over seen by the Rail Safety and Standards Board (RSSB) are two key examples of this. In this project we will work with the National Grid and RSSB to perform a detailed security analysis of their systems, looking for possible points of cyber attack and building an understanding of the impact of possible failures. This will lead to better security for these important systems. Based on what we learn from this analysis we will work with the company Level 3 TRL and Parsons Brinckerhoff to generalise our methods into business processes that other owners of industrial control systems can use to help ensure their systems are safe from cyber attacks.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1472b0499009984111a54a195b6a965d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1472b0499009984111a54a195b6a965d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right