Powered by OpenAIRE graph
Found an issue? Give us feedback

CENSIS

11 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/R041679/1
    Funder Contribution: 253,000 GBP

    The proportion of elderly people is increasing worldwide. In the UK, the Office for National Statistics estimates that "The number of people aged 75 and over is projected to rise by 89.3%, to 9.9 million, by mid-2039; the number of people aged 85 and over is projected to more than double, to reach 3.6 million by mid-2039; and the number of centenarians is projected to rise nearly 6 fold, from 14,000 at mid-2014 to 83,000 at mid-2039". Consequently, conditions such as diabetes, obesity, dementia, Parkinson's disease are expected to increase their incidence, with more and more people affected by multiple conditions at the same time (multimorbidity). Furthermore, statistics in the UK show that "falls and fractures in people aged 65+ account for over 4 million hospital bed days each year in England alone, and the healthcare cost associated with fragility fractures is estimated at £2bn a year". Physical consequences of fall events (fractures, contusions, open wounds, abrasions, strain, and concussions) often require treatment at A&E departments if not hospitalisation, but they also lead to anxiety and loss of independence. All these reduce the quality of life of the people affected and of their families, as well as generate public costs for healthcare provision. Our project will investigate how radar technologies will help vulnerable individuals (older people and people with cognitive or physical impairments, or with multi-morbidity conditions) preserve their independence and quality of life, and provide caregivers and health professionals with individualised information on each patient. In practical terms, our system will monitor activity levels over longer periods of time to detect early signs of cognitive and functional decline, providing not only prompt detection of critical events (e.g. falls, strokes), but also predicting these events from indicators in the data that will enable individualised prompt treatment and intervention from health professionals. Radar sensors transmit and receive electromagnetic waves similar to those used by common devices such as Wi-Fi routers, and the analysis of the received echoes can provide information on how and where a person moves. Radar offers the advantage of providing contactless and non-intrusive monitoring, with no need for the end-users to carry or interact with devices, or alter their behaviour, and no need to record direct optical images of them. This makes these sensors attractive as a potential alternative to wearable sensors and conventional video-cameras, or as a complementary sensor to those ones. Our project will combine cutting-edge research in the field of electronic engineering and machine learning, with end-users engagement from the very early stages (older people, caregivers, health professionals, community members). We will take into account their inputs, requirements, issues, attitudes in relating with our technology, and inform the design and technical choices while developing our system. This will enable to address potential users' acceptance issues and barriers to the development and adoption of the technology, an element of strength to maximise the impact of our proposal.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V008870/1
    Funder Contribution: 262,118 GBP

    Thermal imaging technologies are continuously becoming more affordable and accessible to everyone. Today, a thermal camera can be bought for less than £150. Thermal imaging can be used maliciously to infer the user input on keyboards and touchscreens. For example, taking a thermal image of a keyboard after a user has interacted with it reveals recent input such as passwords, or sensitive messages. This project aims to 1) assess the viability of thermal attacks in everyday computer and mobile usage scenarios, 2) develop and evaluate methods for resisting them on desktop and mobile settings, and 3) raise awareness about this threat and possible countermeasures through impact activities that engage with Logitech, a major manufacturer of input peripherals, and local partners such as CENSIS. This project will produce 1) a dataset of thermal images for research on thermal attacks, 2) empirical findings that explain which factors impact the effectiveness of thermal attacks in realistic everyday scenarios in desktop and mobile settings, 3) recommendations for users and manufacturers for resisting thermal attacks on touchscreens and keyboards, 4) a novel machine learning model to be used by researchers and practitioners to analyse the effectiveness of thermal attacks and evaluate countermeasures, 5) a novel machine learning model that predicts vulnerability to thermal attacks and tools that use it to mitigate the risk, and 6) material to raise awareness about thermal attacks and possible countermeasures.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M01326X/1
    Funder Contribution: 23,061,200 GBP

    We are an interdisciplinary team of physicists, engineers, and computer scientists seeking to form a Hub in Quantum Enhanced Imaging. Our Hub will link world-leading quantum technologists with global industry leaders to transform imaging in alignment with industry priorities and national/international economic and societal needs. Together we will pioneer imaging and sensing systems with breakthrough functionality by developing a family of quantum-enhanced multidimensional cameras operating across a range of wavelengths, timescales and length-scales. Innovations will include: - imaging with the most minimal, or only infrared, illumination; - imaging even where line of sight is blocked; - imaging at wavelengths unachievable by any conventional camera technology;imaging gravity fields with unprecedented sensitivity; and - imaging the microscopic world using quantum light. Quantum Technologies applied to imaging will create cameras offering functionality that is currently not available, transforming a multitude of applications in defence, security, transport, energy, aerospace and the medical/life sciences. We are the only proposed Hub to address the imaging need, and we have over 30 industry partners firmly committed to the aims of the Hub. These partners range from SMEs such as M-Squared Lasers through to multinationals including Thales, e2V and Selex, and consortia including the CENSIS innovation centre, Fraunhofer UK, the UK Astronomy Technology Centre and government bodies including DSTL and NPL. We will support this industrial engagement and exploitation pipeline through a £4M Partnership Fund, managed by our business-led Opportunities Panel that will support jointly funded projects with industry. An additional £3M investment from the Scottish Funding Council will create innovation space within the Hub where companies can co-locate with the academic teams in refining demonstrator systems advancing their TRL to fully precompetitive prototypes. We will engage with the UK's Science Centre Network creating a quantum technology exhibition targeted to interested adults with appeal to wider family audiences and school groups. The exhibit will create space for dialogue about the impact of quantum technologies on the way we live, work and communicate, giving the public an opportunity to feed back their views to the research team. The key strength of this proposal is the combination of a broad-based, highly experienced university consortium with established industry relationships and the relevance of a programme concept shaped by the challenges facing our industry partners.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N007565/1
    Funder Contribution: 4,183,690 GBP

    Sensors are everywhere, facilitating real-time decision making and actuation, and informing policy choices. But extracting information from sensor data is far from straightforward: sensors are noisy, prone to decalibrate, and may be misplaced, moved, compromised, and generally degraded over time. We understand very little about the issues of programming in the face of pervasive uncertainty, yet sensor-driven systems essentially present the designer with uncertainty that cannot be engineered away. Moreover uncertainty is a multi-level phenomenon in which errors in deployment can propagate through to incorrectly-positioned readings and then to poor decisions; system layering breaks down when exposed to uncertainty. How can we be assured a sensor system does what we intend, in a range of dynamic environments, and how can we make a system ``smarter'' ? Currently we cannot answer these questions because we are missing a science of sensor system software. We will develop the missing science that will allow us to engineer for the uncertainty inherent in real-world systems. We will deliver new principles and techniques for the development and deployment of verifiable, reliable, autonomous sensor systems that operate in uncertain, multiple and multi-scale environments. The science will be driven and validated by end-user and experimental applications.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R020957/1
    Funder Contribution: 2,206,900 GBP

    The development of future real-world technologies will be dependent on our ability to understand and harness the underlying principles of living systems, and to direct communication between biological parts and man-made materials. Recent advances in DNA synthesis, sequencing and ultra-sensitive analytical techniques amongst others, have reignited interest in extending the repertoire of functional materials by interfacing them with components derived from biology, blurring the boundary between the living and non-living world. These bio-hybrid systems hold great promise for use in a range of application areas including, for example, the sensing of toxins or pollutants in our environment, diagnosing life-threatening ilnesses in humans and animals, or delivering drugs to specific locations within patients bodies to treat a range of diseases, e.g. cancer. During this project we propose to develop innovative manufacturing methods to enable the reliable and scaleable production of evolvable bio-hybrid systems that possess the inherent ability to sense and repair damage, so-called 'immortal' products. This will ultimately lead to the development of products and devices that can continue to function without needing repair or replacement over the course of their life. For example, imagine a mobile phone that can self-repair its own screen after being dropped, or a circuit board in a laptop computer that can repair itself after being short-circuited. The outputs of this project have the potential to provide solutions to some of our greatest societal challenges and by doing so to reinvigorate the UK manufacturing industry by establishing it as a world leader in the production of self-healing systems. We propose to focus our efforts on three specific application areas. These are: 1. Electrochemical energy devices, e.g. fuel cells and batteries that are needed to power our everyday lives, from mobile phones to electric cars. 2. Consumer electronics, which underpin many of the core technologies that we encounter and use on a day-to-day basis, e.g. computers or televisions. 3. Safety critical systems that are used in the nuclear industry and deep sea technologies, e.g. deep sea cables that can withstand many years of use without needing to be replaced.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.