Powered by OpenAIRE graph
Found an issue? Give us feedback

ITI Energy

Country: United Kingdom
7 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/E010652/1
    Funder Contribution: 117,753 GBP

    The most important and urgent global issue is the establishment of sustainable energy and chemicals feedstock technologies to replace the corresponding fossil fuel based technologies so as to achieve a drastic reduction of atmospheric green-house gases. This colossal task is only possible if we utilise biomass either in the form of waste or energy crops since unutilised biomass will degrade and still produce green-house gases. As regards availability, energy equivalence of biomass produced globally is some 8 times the total global energy need. However, unlike fossil fuels, biomass is widely distributed near the population centres. Hence, biomass logistics may sound to be disadvantageous since their collection for conversion at a central (existing) large scale facility will not be economical. Since the products from biomass themselves (electric power or transport fuel) will have to be distributed, biomass logistics is in fact an advantage, provided we address the problem of 'economies of scale'; that is, it is more cost effective to have processing using very large capacity plants. This drawback is remedied by adopting two new technology concepts: Process Integration and Process Intensification. Integration will provide us with energy and resource efficiency while Intensification will eliminate 'economies of scale' since intensification delivers reduced capital and operating costs (due to drastic reduction in plant size), safety, responsiveness and social acceptability. Similar to the concept of oil-refinery, biomass can be converted to high value (therapeutic) chemicals, the remaining residual biomass is converted to bioethanol through a fermentation process, the residue from which is gasified to obtain syngas. Bioethanol is a highly versatile chemical which can be used as liquid transport fuel, as means of chemical hydrogen storage or as a chemical intermediate for higher chemicals such as plastics or drugs. The intensification element will be present at every level, including the extraction process. Bioethanol production through fermentation is a well known route but it will be intensified by using genetically enhanced bacteria and compare the result with wild type. Genetically enhanced bacteria will be contained within special reactors and the physiological stresses will be controlled at microscopic scale which results in further enhancement of the fermentation productivity. Hence, such technology can be applied to other bioconversions such as drugs. Biomass waste such as municipal solid waste, sewage sludge or agriculture residues can also be converted directly to bioethanol via via gasification which produces syngas which must be cleaned and its composition should be controlled and where necessary gases should be separated into its components (hydrogen, carbon monoxide, methane, carbon dioxide) so that they could be used as chemical building blocks of larger molecules such as ammonia, ethanol and methanol. Alternatively, syngas can be used as a fuel for internal combustion engine or fuel cells to generate electricity. These operations should be carried out at high temperatures to enhance efficiency. Syngas-to-power/higher chemicals conversions also require catalytic reactions. However, syngas is essentially a 'dirty' fuel and must be cleaned from tars, toxic components and particulate matter. We will prepare novel 'intensified' high temperature catalysts where the catalytic sites are accessible through a network of pores, like it is in nature, i.e., lungs and kidneys. Bioethanol is not only a good fuel for cars, it is also a good storage of hydrogen and it can be converted to other chemicals such as commodity plastics, ie, polyethylene. The demonstration of bioethanol as an intermediate chemical will be given.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E010784/1
    Funder Contribution: 14,212 GBP

    The most important and urgent global issue is the establishment of sustainable energy and chemicals feedstock technologies to replace the corresponding fossil fuel based technologies so as to achieve a drastic reduction of atmospheric green-house gases. This colossal task is only possible if we utilise biomass either in the form of waste or energy crops since unutilised biomass will degrade and still produce green-house gases. As regards availability, energy equivalence of biomass produced globally is some 8 times the total global energy need. However, unlike fossil fuels, biomass is widely distributed near the population centres. Hence, biomass logistics may sound to be disadvantageous since their collection for conversion at a central (existing) large scale facility will not be economical. Since the products from biomass themselves (electric power or transport fuel) will have to be distributed, biomass logistics is in fact an advantage, provided we address the problem of 'economies of scale'; that is, it is more cost effective to have processing using very large capacity plants. This drawback is remedied by adopting two new technology concepts: Process Integration and Process Intensification. Integration will provide us with energy and resource efficiency while Intensification will eliminate 'economies of scale' since intensification delivers reduced capital and operating costs (due to drastic reduction in plant size), safety, responsiveness and social acceptability. Similar to the concept of oil-refinery, biomass can be converted to high value (therapeutic) chemicals, the remaining residual biomass is converted to bioethanol through a fermentation process, the residue from which is gasified to obtain syngas. Bioethanol is a highly versatile chemical which can be used as liquid transport fuel, as means of chemical hydrogen storage or as a chemical intermediate for higher chemicals such as plastics or drugs. The intensification element will be present at every level, including the extraction process. Bioethanol production through fermentation is a well known route but it will be intensified by using genetically enhanced bacteria and compare the result with wild type. Genetically enhanced bacteria will be contained within special reactors and the physiological stresses will be controlled at microscopic scale which results in further enhancement of the fermentation productivity. Hence, such technology can be applied to other bioconversions such as drugs. Biomass waste such as municipal solid waste, sewage sludge or agriculture residues can also be converted directly to bioethanol via via gasification which produces syngas which must be cleaned and its composition should be controlled and where necessary gases should be separated into its components (hydrogen, carbon monoxide, methane, carbon dioxide) so that they could be used as chemical building blocks of larger molecules such as ammonia, ethanol and methanol. Alternatively, syngas can be used as a fuel for internal combustion engine or fuel cells to generate electricity. These operations should be carried out at high temperatures to enhance efficiency. Syngas-to-power/higher chemicals conversions also require catalytic reactions. However, syngas is essentially a 'dirty' fuel and must be cleaned from tars, toxic components and particulate matter. We will prepare novel 'intensified' high temperature catalysts where the catalytic sites are accessible through a network of pores, like it is in nature, i.e., lungs and kidneys. Bioethanol is not only a good fuel for cars, it is also a good storage of hydrogen and it can be converted to other chemicals such as commodity plastics, ie, polyethylene. The demonstration of bioethanol as an intermediate chemical will be given.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E010725/1
    Funder Contribution: 157,558 GBP

    The most important and urgent global issue is the establishment of sustainable energy and chemicals feedstock technologies to replace the corresponding fossil fuel based technologies so as to achieve a drastic reduction of atmospheric green-house gases. This colossal task is only possible if we utilise biomass either in the form of waste or energy crops since unutilised biomass will degrade and still produce green-house gases. As regards availability, energy equivalence of biomass produced globally is some 8 times the total global energy need. However, unlike fossil fuels, biomass is widely distributed near the population centres. Hence, biomass logistics may sound to be disadvantageous since their collection for conversion at a central (existing) large scale facility will not be economical. Since the products from biomass themselves (electric power or transport fuel) will have to be distributed, biomass logistics is in fact an advantage, provided we address the problem of 'economies of scale'; that is, it is more cost effective to have processing using very large capacity plants. This drawback is remedied by adopting two new technology concepts: Process Integration and Process Intensification. Integration will provide us with energy and resource efficiency while Intensification will eliminate 'economies of scale' since intensification delivers reduced capital and operating costs (due to drastic reduction in plant size), safety, responsiveness and social acceptability. Similar to the concept of oil-refinery, biomass can be converted to high value (therapeutic) chemicals, the remaining residual biomass is converted to bioethanol through a fermentation process, the residue from which is gasified to obtain syngas. Bioethanol is a highly versatile chemical which can be used as liquid transport fuel, as means of chemical hydrogen storage or as a chemical intermediate for higher chemicals such as plastics or drugs. The intensification element will be present at every level, including the extraction process. Bioethanol production through fermentation is a well known route but it will be intensified by using genetically enhanced bacteria and compare the result with wild type. Genetically enhanced bacteria will be contained within special reactors and the physiological stresses will be controlled at microscopic scale which results in further enhancement of the fermentation productivity. Hence, such technology can be applied to other bioconversions such as drugs. Biomass waste such as municipal solid waste, sewage sludge or agriculture residues can also be converted directly to bioethanol via via gasification which produces syngas which must be cleaned and its composition should be controlled and where necessary gases should be separated into its components (hydrogen, carbon monoxide, methane, carbon dioxide) so that they could be used as chemical building blocks of larger molecules such as ammonia, ethanol and methanol. Alternatively, syngas can be used as a fuel for internal combustion engine or fuel cells to generate electricity. These operations should be carried out at high temperatures to enhance efficiency. Syngas-to-power/higher chemicals conversions also require catalytic reactions. However, syngas is essentially a 'dirty' fuel and must be cleaned from tars, toxic components and particulate matter. We will prepare novel 'intensified' high temperature catalysts where the catalytic sites are accessible through a network of pores, like it is in nature, i.e., lungs and kidneys. Bioethanol is not only a good fuel for cars, it is also a good storage of hydrogen and it can be converted to other chemicals such as commodity plastics, ie, polyethylene. The demonstration of bioethanol as an intermediate chemical will be given.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/J005029/1
    Funder Contribution: 389,014 GBP

    The gasification of biomass wastes represents a major thermochemical route to produce a high energy value hydrogen and methane rich syngas from a source which is renewable and CO2-neutral. Coupled with CO2 capture, the process offers a pre-combustion route to carbon capture sequestration for industrial power and electricity production. However, one of the major issues in the gasification process is the production of tar. Tar is a complex mixture of condensable hydrocarbons. The formation of tar causes major process and syngas use problems, including tar blockages, plugging and corrosion in downstream fuel lines, filters, engine nozzles and turbines. This proposal seeks to develop advanced triple function nano-nickel catalysts for, tar removal, enhanced hydrogen/methane production and CO2 capture and thereby produce high yield, clean, high calorific value syngas from the gasification of biomass/waste. Novel catalysts with homogeneous, well dispersed nano-Ni particles on a high-surface functional structured support, will be produced and examined in relation to the process conditions of gasification of biomass wastes for syngas quality in a continuous operation. The mechanisms of tar reactions, catalyst coke formation and sintering will be developed throughout the programme enabling catalysts to be designed to maximise and predict syngas quality from the process of biomass/waste gasification. The project benefits from the collaboration of a gasification system manufacturer and a catalysts development company who will aid the scale up of the catalyst preparation and trials in full scale gasification systems.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E012299/1
    Funder Contribution: 96,259 GBP

    The most important and urgent global issue is the establishment of sustainable energy and chemicals feedstock technologies to replace the corresponding fossil fuel based technologies so as to achieve a drastic reduction of atmospheric green-house gases. This colossal task is only possible if we utilise biomass either in the form of waste or energy crops since unutilised biomass will degrade and still produce green-house gases. As regards availability, energy equivalence of biomass produced globally is some 8 times the total global energy need. However, unlike fossil fuels, biomass is widely distributed near the population centres. Hence, biomass logistics may sound to be disadvantageous since their collection for conversion at a central (existing) large scale facility will not be economical. Since the products from biomass themselves (electric power or transport fuel) will have to be distributed, biomass logistics is in fact an advantage, provided we address the problem of 'economies of scale'; that is, it is more cost effective to have processing using very large capacity plants. This drawback is remedied by adopting two new technology concepts: Process Integration and Process Intensification. Integration will provide us with energy and resource efficiency while Intensification will eliminate 'economies of scale' since intensification delivers reduced capital and operating costs (due to drastic reduction in plant size), safety, responsiveness and social acceptability. Similar to the concept of oil-refinery, biomass can be converted to high value (therapeutic) chemicals, the remaining residual biomass is converted to bioethanol through a fermentation process, the residue from which is gasified to obtain syngas. Bioethanol is a highly versatile chemical which can be used as liquid transport fuel, as means of chemical hydrogen storage or as a chemical intermediate for higher chemicals such as plastics or drugs. The intensification element will be present at every level, including the extraction process. Bioethanol production through fermentation is a well known route but it will be intensified by using genetically enhanced bacteria and compare the result with wild type. Genetically enhanced bacteria will be contained within special reactors and the physiological stresses will be controlled at microscopic scale which results in further enhancement of the fermentation productivity. Hence, such technology can be applied to other bioconversions such as drugs. Biomass waste such as municipal solid waste, sewage sludge or agriculture residues can also be converted directly to bioethanol via via gasification which produces syngas which must be cleaned and its composition should be controlled and where necessary gases should be separated into its components (hydrogen, carbon monoxide, methane, carbon dioxide) so that they could be used as chemical building blocks of larger molecules such as ammonia, ethanol and methanol. Alternatively, syngas can be used as a fuel for internal combustion engine or fuel cells to generate electricity. These operations should be carried out at high temperatures to enhance efficiency. Syngas-to-power/higher chemicals conversions also require catalytic reactions. However, syngas is essentially a 'dirty' fuel and must be cleaned from tars, toxic components and particulate matter. We will prepare novel 'intensified' high temperature catalysts where the catalytic sites are accessible through a network of pores, like it is in nature, i.e., lungs and kidneys. Bioethanol is not only a good fuel for cars, it is also a good storage of hydrogen and it can be converted to other chemicals such as commodity plastics, ie, polyethylene. The demonstration of bioethanol as an intermediate chemical will be given.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.