
Centre of Process Innovation Limited
Centre of Process Innovation Limited
2 Projects, page 1 of 1
assignment_turned_in Project2019 - 2020Partners:Unilever R&D, Axion Recycling Ltd, B&M Longworth (Edgworth) Ltd, Argent Energy (UK) Limited, Tesco +8 partnersUnilever R&D,Axion Recycling Ltd,B&M Longworth (Edgworth) Ltd,Argent Energy (UK) Limited,Tesco,University of Salford,Samsung Electronics,Centre of Process Innovation Limited,Co-operative Group Limited,Chatham House,Greater Manchester Combined Authority,Plastics Europe,AstraZeneca plcFunder: UK Research and Innovation Project Code: EP/S025200/1Funder Contribution: 826,550 GBPAs individuals, our daily routines rely on plastics in their many shapes and forms, whether as long lasting components of our homes and vehicles or as essential elements of important advances in medicine, water purification and infrastructure, or as packaging for cosmetics, food, drink, toiletries, cleaning products and healthcare products. These plastics are unrivalled materials: they are inexpensively synthesised, lightweight, recyclable and often deliver unmatchable performance. However, our love of plastics comes at a significant cost, as the environmental impact of these materials is massive, and growing. Genuinely sustainable plastics will need new forms of resource efficient materials, smart supply chains, and sustainable business practices, requiring holistic and integrated solutions. This proposal brings together diverse groups from across The University of Manchester to tackle this grand challenge of plastic waste. We seek solutions to the challenge of plastics pollution through an integrated approach that explicitly couples Manchester's strength in sociotechnological understanding and influence to our industry-guided solutions across chemistry, safety, materials, engineering and social sciences. The goal is to create a concerted, focussed consortium of diverse individuals who will lead stakeholder conversations, pitch multi-disciplinary projects that build from our strengths, and incubate these projects into translatable solutions. Through these collaborative efforts we will develop 6-12 projects building from our diverse expertise in urban recycling, sustainable business models, invisible plastic waste, valorising waste plastic streams, and new degradable polymers, and through them aim to: i) reduce the need for plastic by addressing demand, ii) improve the materials used to deliver better performance and clean degradation, iii) demonstrate new methods for recycling soft and mixed plastics/non-plastic films (currently very difficulty) and removal of micro plastics from source; and iv) create smart circular economies that allow users to take ownership of and reduce plastic waste. A multidisciplinary team of researchers at The University of Manchester will lead a portfolio of projects to tackle this grand challenge. Activities will be aligned with the first-of-its-kind Greater Manchester plan to drive down single-use plastics by 2020 and use the city-region as a living lab to innovate at speed and deploy solutions at scale.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d61a3e4a7dd33233383b6ec91d23b6cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d61a3e4a7dd33233383b6ec91d23b6cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2028Partners:Knowledge Transfer Network Ltd, UNIVERSITY OF EXETER, Pepsico International Ltd, Metasonixx, PragmatIC Printing Ltd +46 partnersKnowledge Transfer Network Ltd,UNIVERSITY OF EXETER,Pepsico International Ltd,Metasonixx,PragmatIC Printing Ltd,Rolls-Royce,Metamaterial Technologies (Canada),University of Exeter,BAE Systems,Qioptiq Ltd,Centre for Process Innovation,Cobham (United Kingdom),Cobham,AWE,Pepsico International Ltd,Oxford Instruments (United Kingdom),Defence Science and Technology Laboratory,PragmatIC (United Kingdom),Waveoptics,Centre for Process Innovation (replace),Cobham,University of Exeter,PepsiCo (United Kingdom),Thales UK Limited,Technical Composite Systems,Henry Royce Institute,Henry Royce Institute,Rolls-Royce (United Kingdom),EADS Airbus,Knowledge Transfer Network,Atomic Weapons Establishment,Technical Composite Systems,Metamaterial Technologies Inc.,Airbus Group Limited (UK),MBDA UK Ltd,Metasonixx,Thales (United Kingdom),Qinetiq (United Kingdom),Centre of Process Innovation Limited,THALES UK LIMITED,MBDA (United Kingdom),BAE SYSTEMS PLC,Defence Science & Tech Lab DSTL,Business West,BAE Systems (United Kingdom),Airbus (United Kingdom),Oxford Instruments (United Kingdom),Business West,Rolls-Royce,Defence Science & Tech Lab DSTL,WaveopticsFunder: UK Research and Innovation Project Code: EP/V002198/1Funder Contribution: 3,376,140 GBPMetamaterials are artificial materials with characteristics beyond those found in nature that unlock routes to material and device functionalities not available using conventional approaches. Their electromagnetic, acoustic or mechanical behaviour is not simply dictated by averaging out the properties of their constituent elements, but emerge from the precise control of geometry, arrangement, alignment, material composition, shape, size and density of their constituent elements. In terms of applications, metamaterials have phenomenal potential, in important areas, from energy to ICT, defence & security, aerospace, and healthcare. Numerous market research studies predict very significant growth over the next decade, for example, by 2030 the metamaterial device market is expected to reach a value of over $10bn (Lux Research 2019). The 'Metamaterials' topic is inherently interdisciplinary, spanning advanced materials (plasmonics, active materials, RF, high index contrast, 2D materials, phase change materials, transparent conductive oxides, soft materials), theoretical physics, quantum physics, chemistry, biology, engineering (mechanical and electrical), acoustics, computer sciences (e.g. artificial intelligence, high performance computing), and robotics. Historically, the UK has been a global leader in the field, with its roots in the work of radar engineers in the 2nd World War, and being reinvigorated by the research of some of our most eminent academics, including Professor Sir John Pendry. However today, it risks falling behind the curve. As a specific example, the Chinese government has funded the development of the world's first large-scale metamaterial fabrication facility, which has capacity to produce 100,000 m2 of metamaterial plates annually, with projects relating to aerospace, communication, satellite and military applications. The breadth of metamaterial research challenges is huge, from theory, fabrication, experiment, and requiring expertise in large-scale manufacturing and field testing for successful exploitation. We believe that the isolation of research groups and lack of platforms to exchange and develop ideas currently inhibits the UK's access to the interdisciplinary potential existing within our universities, industries, and governmental agencies. It is of the utmost importance to develop interactions and mobility between these communities, to enable knowledge transfer, innovation, and a greater understanding of the barriers and opportunities. The intervention that this Network will provide will ensure that the UK does not lag our international competitors. Via the Network's Special Interest Groups, Forums, National Symposia and other community-strengthening strategies, the enhanced collaboration will help resolve key interdisciplinary challenges and foster the required talent pipeline across academia and industry. As a result we will see an increase in research power for the metamaterials theme, and therefore reaping the impact opportunities of this area for UK economy and society. The Network's extensive promotion of the benefits of metamaterials technology (e.g., case studies, white papers etc), facilitation of access to metamaterial experts and facilities (through the online database) and closer interactions with end-users at appropriate events (e.g. industry-academia workshops) will help grow external investment in metamaterials research. Ultimately the Network will provide the stimulation of a discovery-innovation-enterprise cycle to meet desired outcomes for prosperity and consequentially, society, defence, and security.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e4addf5332c38328dc388e1c1c2bebd8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e4addf5332c38328dc388e1c1c2bebd8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu