Powered by OpenAIRE graph
Found an issue? Give us feedback

Centre of Process Innovation Limited

Centre of Process Innovation Limited

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/S025200/1
    Funder Contribution: 826,550 GBP

    As individuals, our daily routines rely on plastics in their many shapes and forms, whether as long lasting components of our homes and vehicles or as essential elements of important advances in medicine, water purification and infrastructure, or as packaging for cosmetics, food, drink, toiletries, cleaning products and healthcare products. These plastics are unrivalled materials: they are inexpensively synthesised, lightweight, recyclable and often deliver unmatchable performance. However, our love of plastics comes at a significant cost, as the environmental impact of these materials is massive, and growing. Genuinely sustainable plastics will need new forms of resource efficient materials, smart supply chains, and sustainable business practices, requiring holistic and integrated solutions. This proposal brings together diverse groups from across The University of Manchester to tackle this grand challenge of plastic waste. We seek solutions to the challenge of plastics pollution through an integrated approach that explicitly couples Manchester's strength in sociotechnological understanding and influence to our industry-guided solutions across chemistry, safety, materials, engineering and social sciences. The goal is to create a concerted, focussed consortium of diverse individuals who will lead stakeholder conversations, pitch multi-disciplinary projects that build from our strengths, and incubate these projects into translatable solutions. Through these collaborative efforts we will develop 6-12 projects building from our diverse expertise in urban recycling, sustainable business models, invisible plastic waste, valorising waste plastic streams, and new degradable polymers, and through them aim to: i) reduce the need for plastic by addressing demand, ii) improve the materials used to deliver better performance and clean degradation, iii) demonstrate new methods for recycling soft and mixed plastics/non-plastic films (currently very difficulty) and removal of micro plastics from source; and iv) create smart circular economies that allow users to take ownership of and reduce plastic waste. A multidisciplinary team of researchers at The University of Manchester will lead a portfolio of projects to tackle this grand challenge. Activities will be aligned with the first-of-its-kind Greater Manchester plan to drive down single-use plastics by 2020 and use the city-region as a living lab to innovate at speed and deploy solutions at scale.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V002198/1
    Funder Contribution: 3,376,140 GBP

    Metamaterials are artificial materials with characteristics beyond those found in nature that unlock routes to material and device functionalities not available using conventional approaches. Their electromagnetic, acoustic or mechanical behaviour is not simply dictated by averaging out the properties of their constituent elements, but emerge from the precise control of geometry, arrangement, alignment, material composition, shape, size and density of their constituent elements. In terms of applications, metamaterials have phenomenal potential, in important areas, from energy to ICT, defence & security, aerospace, and healthcare. Numerous market research studies predict very significant growth over the next decade, for example, by 2030 the metamaterial device market is expected to reach a value of over $10bn (Lux Research 2019). The 'Metamaterials' topic is inherently interdisciplinary, spanning advanced materials (plasmonics, active materials, RF, high index contrast, 2D materials, phase change materials, transparent conductive oxides, soft materials), theoretical physics, quantum physics, chemistry, biology, engineering (mechanical and electrical), acoustics, computer sciences (e.g. artificial intelligence, high performance computing), and robotics. Historically, the UK has been a global leader in the field, with its roots in the work of radar engineers in the 2nd World War, and being reinvigorated by the research of some of our most eminent academics, including Professor Sir John Pendry. However today, it risks falling behind the curve. As a specific example, the Chinese government has funded the development of the world's first large-scale metamaterial fabrication facility, which has capacity to produce 100,000 m2 of metamaterial plates annually, with projects relating to aerospace, communication, satellite and military applications. The breadth of metamaterial research challenges is huge, from theory, fabrication, experiment, and requiring expertise in large-scale manufacturing and field testing for successful exploitation. We believe that the isolation of research groups and lack of platforms to exchange and develop ideas currently inhibits the UK's access to the interdisciplinary potential existing within our universities, industries, and governmental agencies. It is of the utmost importance to develop interactions and mobility between these communities, to enable knowledge transfer, innovation, and a greater understanding of the barriers and opportunities. The intervention that this Network will provide will ensure that the UK does not lag our international competitors. Via the Network's Special Interest Groups, Forums, National Symposia and other community-strengthening strategies, the enhanced collaboration will help resolve key interdisciplinary challenges and foster the required talent pipeline across academia and industry. As a result we will see an increase in research power for the metamaterials theme, and therefore reaping the impact opportunities of this area for UK economy and society. The Network's extensive promotion of the benefits of metamaterials technology (e.g., case studies, white papers etc), facilitation of access to metamaterial experts and facilities (through the online database) and closer interactions with end-users at appropriate events (e.g. industry-academia workshops) will help grow external investment in metamaterials research. Ultimately the Network will provide the stimulation of a discovery-innovation-enterprise cycle to meet desired outcomes for prosperity and consequentially, society, defence, and security.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.