
Cargill Plc
Cargill Plc
7 Projects, page 1 of 2
assignment_turned_in Project2013 - 2019Partners:Cargill Plc (UK), H J Heinz Co Ltd., Iceland Foods Ltd, Doug Marriott Associates, Tesco +68 partnersCargill Plc (UK),H J Heinz Co Ltd.,Iceland Foods Ltd,Doug Marriott Associates,Tesco,Thorntons Budgens,WRAP,WR Refrigeration,Buro Happold,Heineken International B.V.,Kelvion Searle,Technology Strategy Board,Monodraught Ltd,Food Storage and Distribution Federation,Heineken International B.V.,CAMPDEN BRI,PepsiCo (Global),PepsiCo,Waitrose,Food & Drink Federation,Dept for Env Food & Rural Affairs DEFRA,IFST,BURO HAPPOLD LIMITED,Modern Built Environment,Department for Environment Food and Rural Affairs,Kellogg Europe Trading Limited,Environmental Sustainability KTN,Buro Happold Limited,Chartered Inst of Logistics &Transport,Brunel University London,H J Heinz Co Ltd.,Waitrose,British Refrigeration Association,Biosciences KTN,Biosciences KTN,The Sustainability Consortium,Hydropac Ltd,The Sustainability Consortium,Thorntons Budgens,Maintenance Management Ltd,Dept for Env Food & Rural Affairs DEFRA,CHEMISTRY INNOVATION LIMITED,Chartered Inst of Logistics & Transport,Tesco,Centre for Process Innovation CPI (UK),CPI,Marks and Spencer,Hydropac Ltd,GEA Searle,Premier Foods Group Ltd,WR Refrigeration,Kraft Foods Worldwide Corporate HQ,Kellogg Europe Trading Limited,Food Storage and Distribution Federation,WRAP (Waste and Resources Action Prog),Heat Pump Association,Premier Foods Group Ltd,Monodraught Ltd,PIL,Food and Drink Federation,MARKS AND SPENCER PLC,Campden BRI,BDA,Maintenance Management Ltd,Doug Marriott Associates Ltd,Iceland Foods Ltd,CPI Ltd,Process Integration Limited,Institute of Food Science and Technology,Brunel University,Kraft Foods Worldwide Corporate HQ,Chemistry Innovation,Cargill PlcFunder: UK Research and Innovation Project Code: EP/K011820/1Funder Contribution: 5,699,190 GBPThe UK food chain, comprising agricultural production, manufacturing, distribution, retail and consumption, involves more than 300,000 enterprises and employs 3.6 million people. The food and drink industry is the largest manufacturing sector, employing 500,000 people and contributing £80 billion to the economy. It is also estimated that the food chain is responsible for 160 MtCO2e emissions and 15 Mt of food waste, causing significant environmental impacts. Energy is an important input in all stages of the food chain and is responsible for 18% of the UK's final energy demand. In recent years, progress has been made in the reduction of energy consumption and emissions from the food chain primarily through the application of well proven technologies that could lead to quick return on investment. To make further progress, however, significant innovations will have to be made in approaches and technologies at all stages of the food chain, taking a holistic view of the chain and the interactions both within the chain and the external environment. The EPSRC Centre for Sustainable Energy Use in Food Chains will make significant contributions in this field. It will bring together multidisciplinary research groups of substantial complementary experience and internationally leading research track record from the Universities of Brunel, Manchester and Birmingham and a large number of key stakeholders to investigate and develop innovative approaches and technologies to effect substantial end use energy demand reductions. The Centre will engage both in cutting edge research into approaches and technologies that will have significant impacts in the future, leading towards the target of 80% reduction in CO2 emissions by 2050, but also into research that will have demonstrable impacts within the initial five year lifetime of the Centre. Taking a whole systems approach, the research themes will involve: i) Simulation of energy and resource flows in the food chain, from farm-gate to plate to enable investigations of energy and resource flows between the stages of the chain and the external environment, and facilitate overall energy and resource use optimisation taking into consideration the impact of policy decisions, future food and energy prices and food consumption trends. ii) Investigation of approaches and technologies for the reduction of energy use at all stages of the chain through reduction of the energy intensity of individual processes and optimisation of resource use. It is expected that a number of new innovative and more efficient technologies and approaches for energy reduction will be developed in the lifetime of the Centre to address processing, distribution, retail and final consumption in the home and the service sector. iii) Identification of optimal ways of interaction between the food chain and the UK energy supply system to help manage varying demand and supply through distributed power generation and demand-response services to the grid. iv) Study of consumer behaviour and the impact of key influencing factors such as changing demographics, increased awareness of the needs and requirements of sustainable living, economic factors and consumption trends on the nature and structure of the food chain and energy use. Even though the focus will be on the food chain, many of the approaches and technologies developed will also be applicable to other sectors of the economy such as industry, commercial and industrial buildings and transportation of goods. The Centre will involve extensive collaboration with the user community, manufacturers of technology, Government Departments, Food Associations and other relevant research groups and networks. A key vehicle for dissemination and impact will be a Food Energy and Resource Network which will organise regular meetings and annual international conferences to disseminate the scientific outputs and engage the national and international research and user communities
more_vert assignment_turned_in Project2016 - 2024Partners:WSP UK LIMITED, Mott Macdonald, CIRIA, EDF Energy (United Kingdom), Halcrow Group Ltd +86 partnersWSP UK LIMITED,Mott Macdonald,CIRIA,EDF Energy (United Kingdom),Halcrow Group Ltd,LONDON UNDERGROUND LIMITED,Thales Aerospace,WSP UK LIMITED,COSTAIN LTD,TREL,NPL,WSP Civils,Telespazio Vega,Redbite Solutions,Telespazio Vega,Rolatube Technology Ltd,Heriot-Watt University,Buro Happold Limited,Arup Group Ltd,Buro Happold,BURO HAPPOLD LIMITED,Geothermal International Ltd,AIG Science,CH2M HILL UNITED KINGDOM,Tongji University,Centro Public Transport,Carillion Plc,Cambridgeshire County Council,UCL,National Physical Laboratory NPL,Transport Systems Catapult,Environmental Scientifics Group,UT,Environmental Scientifics Group,CIRIA,National Highways,Future Cities Catapult,Mott Macdonald (United Kingdom),RU,Costain Ltd,ITM,Cambridge Integrated Knowledge Centre,Department for Transport,High Speed Two HS2 Limited,Ove Arup & Partners Ltd,GE Aviation,INF,Rolatube Technology Ltd,Cementation Skanska,Tongji University,University of Cambridge,University of Oxford,Sengenia Ltd,Crossrail Limited,Arup Group,AIG Science,High Speed Two HS2 Ltd,Crossrail Limited,Geothermal International Ltd,Transport Systems Catapult,Mabey Holdings Limited,Future Cities Catapult,Centro Public Transport,Thales UK Limited,AgustaWestland,Heriot-Watt University,Sengenia Ltd,Omnisense Limited,Redbite Solutions,Cambridgeshire County Council,UNIVERSITY OF CAMBRIDGE,ITM Monitoring,EDF Energy Plc (UK),Topcon Great Britain Ltd,McLaren Automotive Ltd,Cementation Skanska Limited,Topcon,Laing O'Rourke,British Energy Generation Ltd,Laing O'Rourke plc,Mabey Holdings Limited,CH2M Hill (United Kingdom),Rutgers State University of New Jersey,TfL,Toshiba Research Europe Ltd,THALES UK LIMITED,McLaren Automotive Ltd,Highways Agency,GE Aviation,Rutgers University,Cargill PlcFunder: UK Research and Innovation Project Code: EP/N021614/1Funder Contribution: 3,163,720 GBPGlobally, national infrastructure is facing significant challenges: - Ageing assets: Much of the UK's existing infrastructure is old and no longer fit for purpose. In its State of the Nation Infrastructure 2014 report the Institution of Civil Engineers stated that none of the sectors analysed were "fit for the future" and only one sector was "adequate for now". The need to future-proof existing and new infrastructure is of paramount importance and has become a constant theme in industry documents, seminars, workshops and discussions. - Increased loading: Existing infrastructure is challenged by the need to increase load and usage - be that number of passengers carried, numbers of vehicles or volume of water used - and the requirement to maintain the existing infrastructure while operating at current capacity. - Changing climate: projections for increasing numbers and severity of extreme weather events mean that our infrastructure will need to be more resilient in the future. These challenges require innovation to address them. However, in the infrastructure and construction industries tight operating margins, industry segmentation and strong emphasis on safety and reliability create barriers to introducing innovation into industry practice. CSIC is an Innovation and Knowledge Centre funded by EPSRC and Innovate UK to help address this market failure, by translating world leading research into industry implementation, working with more than 40 industry partners to develop, trial, provide and deliver high-quality, low cost, accurate sensor technologies and predictive tools which enable new ways of monitoring how infrastructure behaves during construction and asset operation, providing a whole-life approach to achieving sustainability in an integrated way. It provides training and access for industry to source, develop and deliver these new approaches to stimulate business and encourage economic growth, improving the management of the nation's infrastructure and construction industry. Our collaborative approach, bringing together leaders from industry and academia, accelerates the commercial development of emerging technologies, and promotes knowledge transfer and industry implementation to shape the future of infrastructure. Phase 2 funding will enable CSIC to address specific challenges remaining to implementation of smart infrastructure solutions. Over the next five years, to overcome these barriers and create a self-sustaining market in smart infrastructure, CSIC along with an expanded group of industry and academic partners will: - Create the complete, innovative solutions that the sector needs by integrating the components of smart infrastructure into systems approaches, bringing together sensor data and asset management decisions to improve whole life management of assets and city scale infrastructure planning; spin-in technology where necessary, to allow demonstration of smart technology in an integrated manner. - Continue to build industry confidence by working closely with partners to demonstrate and deploy new smart infrastructure solutions on live infrastructure projects. Develop projects on behalf of industry using seed-funds to fund hardware and consumables, and demonstrate capability. - Generate a compelling business case for smart infrastructure solutions together with asset owners and government organisations based on combining smarter information with whole life value models for infrastructure assets. Focus on value-driven messaging around the whole system business case for why smart infrastructure is the future, and will strive to turn today's intangibles into business drivers for the future. - Facilitate the development and expansion of the supply chain through extending our network of partners in new areas, knowledge transfer, smart infrastructure standards and influencing policy.
more_vert assignment_turned_in Project2012 - 2014Partners:Biopolymer Solutions, Mettler-Toledo Ltd, NTU, Cargill Plc (UK), General Mills (United States) +7 partnersBiopolymer Solutions,Mettler-Toledo Ltd,NTU,Cargill Plc (UK),General Mills (United States),University of Nottingham,Thermo Fisher Stone,Mettler-Toledo Ltd,Biopolymer Solutions,General Mills,ThermoFisher Scientific,Cargill PlcFunder: UK Research and Innovation Project Code: BB/H007377/1Funder Contribution: 166,583 GBPAn understanding of how food behaves in the body is obviously important. There is a physical dimension to this, in addition to nutritional and biochemical factors. Central to the work proposed in this grant is the idea that foods can mix with saliva and other water based fluids to different levels of efficiency and this impacts on how the food tastes and behaves when eaten. It is has been demonstrated that saltiness is perceived as being higher from starch thickened foods when compared to foods thickened with other materials, even though the viscosity and level of salt are the same. The reason for this is that in the starch system much of the starch remains in a particulate form, while the other materials form solutions that are then hard to mix. In the mouth, sodium that remains in the food and cannot reach the taste receptors on the tongue will not be perceived as salty. Therefore ingredients that can be added to foods that give excellent mixing quality, and hence allow the best perception of flavour, are required. A major part of the project will concentrate on the development of new particulate thickening systems using hydrocolloids and starches (already common ingredients in foods) using physical technologies that use energy sources efficiently and have low wastage. Work at Nottingham partly through a Bridge LINK project, on which this full project is based, has demonstrated the feasibility of developing new particulate ingredients from hydrocolloids such as xanthan gum. Physically modified starch that maintain particulate structures in a similar way to chemically crosslinked starches are already available, but the project will use a new approaches to produce improved ingredients of this type. The project will use a combination of sensory evaluation and instrumental techniques to develop criteria to predict salt perception and mouthfeel. In addition, a limited amount of work will be performed to confirm that the mixing hypothesis is relevant to behaviour in the stomach. To deliver this programme will require a team of companies and academics working together to further develop and then exploit the understanding partly result from a Bridge LINK project. Industrial partners in the team will supply a detailed knowledge of both suitable starting ingredients for the processing technologies and foods that will benefit from new ingredients that would allow salt levels to be reduced whilst maintaining the same flavour. There is also a requirement for expertise and specialist equipment for extrusion processing and thermal analysis, which will be supplied by industry and management from staff that are free of the major teaching and administrative pressures of a successful applied science department. Hence, the programme will have five companies plus an academic partner in a consortium to deliver the work and who can translate the findings into 'better for you' food products without loss of quality.
more_vert assignment_turned_in Project2013 - 2014Partners:Monsanto UK Limited, Home Grown Cereals Authority, Cargill Plc (UK), University of York, FUCHS Lubricants UK Plc +11 partnersMonsanto UK Limited,Home Grown Cereals Authority,Cargill Plc (UK),University of York,FUCHS Lubricants UK Plc,Monsanto UK Limited,Velcourt Ltd,CPB Twyfords,FUCHS Lubricants UK Plc,Velcourt Ltd,CPB Twyfords,Saaten Union UK Ltd,Saaten Union UK Ltd,Home Grown Cereals Authority,University of York,Cargill PlcFunder: UK Research and Innovation Project Code: BB/F015798/2Funder Contribution: 103,976 GBPBio-lubricants have both environmental and technical advantages over their counterparts derived from mineral oils. In addition to being renewable, they are biodegradable, have lower volatile emissions and low environmental toxicity. They provide superior anti-wear protection and exhibit reduced combustibility. In addition, bio-lubricants have lower coefficients of friction, which results in reduced energy costs for equipment in which bio-lubricants as used. Although vegetable oils are used in blending some less stressed lubricants, their thermal stability is inadequate for the majority of applications as a consequence of the presence of excessive polyunsaturation of their constituent fatty acids. In view of the poor stability of conventional refined rapeseed oil, lubricant blenders currently favour the use of synthetic esters with a high renewables content of the production of the more stressed lubricant types; this more expensive base oil currently inhibits uptake of bio-lubricants by end users. Rapeseed oil has many physical and chemical properties that are advantageous for base oil for the lubricants industry. However, the total content of polyunsaturated fatty acids remains too high and the resulting instability is the principal barrier to its widespread use. The target set by the industry is reduction to less than 5% total PUFAs, whilst retaining the other desirable physical and chemical properties of rapeseed oil. To be economically competitive, some yield penalty in the crop and increased processing costs can be tolerated, as its principal competitor in the market place, low PUFA sunflower oil, is presently priced at up to $120/tonne more on the commodity markets. Nevertheless, the approaches we propose should result in little, if any, yield loss from fully developed varieties. The purpose of the project is to underpin the development of oilseed rape varieties for the production of oil for use in the lubricants industry. A key knowledge gap is an understanding of how to substantially reduce the content of polyunsaturated fatty acids in rapeseed oil without reducing the oil yield of the crop. We will address this knowledge gap and enable establishment of a closed supply chain. This involves: (a) The genetic improvement of oilseed rape by mutagenesis of specific genes in order to produce, from a high-yielding winter crop, oil very low in polyunsaturated fatty acids. (b) Assessment of the physical properties of the oil produced in order to validate its utility. (c) Provision of characterised oilseed rape lines to the breeding industry for the development of cultivars. (d) Catalysing assembly of a supply chain. The strategy is non-GM, so we anticipate no barriers to the widespread utilization of the resultant varieties in the UK.
more_vert assignment_turned_in Project2013 - 2018Partners:Pipeline Industries Guild, NEL Fund Managers, CH2M Hill Incorporated USA, Climate-KIC, Atkins UK +57 partnersPipeline Industries Guild,NEL Fund Managers,CH2M Hill Incorporated USA,Climate-KIC,Atkins UK,NUAG,North East Local Enterprise Partnership,Newcastle University,Birmingham City Council,National Grid PLC,Arup Group Ltd,CH2M Hill Incorporated USA,National Underground Assets Group Ltd,CBI,LEEDS CITY COUNCIL,Cargill Plc,University of Salford,Worcestershire County Council,Climate-KIC,Balfour Beatty (United Kingdom),Newcastle Science Central,ICE,Network Rail Ltd,University of Salford,Newcastle City Council,Worcestershire County Council,CBI,The Institution of Civil Engineers,Malvern Hills District Council,Pipeline Industries Guild (United Kingdom),NEWCASTLE CITY COUNCIL,South East Local Enterprise Partnership,Price Waterhouse Coopers,BALFOUR BEATTY RAIL,Newcastle City Council,Network Rail,UKWIR,Arup Group,Environmental Sustainability KTN,Carillion Plc,Atkins UK,Ove Arup & Partners Ltd,Tipping Point,Halcrow Group Limited,Price Waterhouse Coopers LLP,Newcastle Science Central,Leeds City Council,Malvern Hills District Council,NEL Fund Managers,BIRMINGHAM CITY COUNCIL,Building Research Establishment,BRE Trust,UK Water Industry Research Ltd (UKWIR),Leeds City Council,Birmingham City Council,Tipping Point,Newcastle University,BRE Trust (Building Res Excellence),National Grid plc,BALFOUR BEATTY PLC,Halcrow Group Ltd,Technology Strategy BoardFunder: UK Research and Innovation Project Code: EP/K012398/1Funder Contribution: 3,567,860 GBPOur national infrastructure - the systems of infrastructure networks (e.g. energy, water, transport, waste, ICT) that support services such as healthcare, education, emergency response and thereby ensure our social, economic and environmental wellbeing - faces a multitude of challenges. A growing population, modern economy and proliferation of new technologies have placed increased and new demands on infrastructure services and made infrastructure networks increasingly inter-connected. Meanwhile, investment has not kept up with the pace of change leaving many components at the end of their life. Moreover, global environmental change necessitates reduced greenhouse gas emissions and improved resilience to extreme events, implying major reconfigurations of these infrastructure systems. Addressing these challenges is further complicated by fragmented, often reactive, regulation and governance arrangements. Existing business models are considered by the Treasury Select Committee to provide poor value but few proven alternative models exist for mobilising finance, particularly in the current economic climate. Continued delivery of our civil infrastructure, particularly given current financial constraints, will require innovative and integrated thinking across engineering, economic and social sciences. If the process of addressing these issues is to take place efficiently, whilst also minimising associated risks, it will need to be underpinned by an appropriate multi-disciplinary approach that brings together engineering, economic and social science expertise to understand infrastructure financing, valuation and interdependencies under a range of possible futures. The evidence that must form the basis for such a strategic approach does not yet exist. However, evidence alone will be insufficient, so we therefore propose to establish a Centre of excellence, i-BUILD, that will bring together three UK universities with world-leading track records in engineering, economics and social sciences; a portfolio of pioneering inter-disciplinary research; and the research vision and capacity to deliver a multi-disciplinary analysis of innovative business models around infrastructure interdependencies. While national scale plans, projects and procedures set the wider agenda, it is at the scale of neighbourhoods, towns and cities that infrastructure is most dense and interdependencies between infrastructures, economies and society are most profound - this is where our bid is focussed. Balancing growth across regions and scales is crucial to the success of the national economy. Moreover, the localism agenda is encouraging local agents to develop new infrastructure related business but these are limited by the lack of robust new business models with which to do so at the local and urban scale. These new business models can only arise from a step change in the cost-benefit ratio for infrastructure delivery which we will achieve by: (i) reducing the costs of infrastructure delivery by understanding interdependencies and alternative finance models, (ii) improving valuation of infrastructure benefits by identifying and exploiting the social, environmental and economic opportunities, and, (iii) reconciling national and local priorities. The i-BUILD centre will deliver these advances through development of a new generation of value analysis tools, interdependency models and multi-scale implementation plans. These methods will be tested on integrative case studies that are co-created with an extensive stakeholder group, to provide demonstrations of new methods that will enable a revolution in the business of infrastructure delivery in the UK. Funding for a Centre provides the opportunity to work flexibly with partners in industry, local and national government to address a research challenge of national and international importance, whilst becoming an international landmark programme recognised for novelty, research excellence and impact.
more_vert
chevron_left - 1
- 2
chevron_right