Powered by OpenAIRE graph
Found an issue? Give us feedback

Scottish Canals (United Kingdom)

Scottish Canals (United Kingdom)

4 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: NE/M008479/1
    Funder Contribution: 37,425 GBP

    The proposed project seeks to change current asset management practice with an economically viable monitoring and early warning system, PRIME, that produces near-real-time information to provide decision support and 'solutions' for a range of infrastructure earthwork instability problems. In particular, this project aims to demonstrate and validate newly developed geophysical monitoring technology as a means of improving the resilience of vulnerable rail and water transportation earthworks infrastructure to environmental risks, such as extreme weather and flooding. The new technology could stream near-real-time information on the internal condition of earthworks direct to geotechnical asset owners - thereby allowing slope failure processes to be identified at an early stage so low cost preventative intervention can be planned with minimal disruption to infrastructure (rather than high-cost renewal and remediation of catastrophic earthwork failures, which can be highly disruptive - particularly for the rail industry due to financial penalties associated with delays). In response to guidance by the industrial partners we aim to further demonstrate and validate the PRIME concept by testing the approach in a greater range of operational settings, including a railway embankment and a water retaining structure on the canal network. This will allow the project team (asset owners, managers and research providers) to consider a range of practical deployment options, demonstrate an adaptive intelligent monitoring approach, undertake a cost benefit analysis, and formally assess the Technology Readiness Level of PRIME by drawing upon the outcomes of the case studies developed under this project and the study undertaken during the related Innovation B project. The overarching aim of the project is to provide the necessary evidence to the stakeholders that PRIME is applicable as an economically viable monitoring, early warning and decision support system (i.e. a 'solution') for a range of infrastructure earthwork instability problems.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N007565/1
    Funder Contribution: 4,183,690 GBP

    Sensors are everywhere, facilitating real-time decision making and actuation, and informing policy choices. But extracting information from sensor data is far from straightforward: sensors are noisy, prone to decalibrate, and may be misplaced, moved, compromised, and generally degraded over time. We understand very little about the issues of programming in the face of pervasive uncertainty, yet sensor-driven systems essentially present the designer with uncertainty that cannot be engineered away. Moreover uncertainty is a multi-level phenomenon in which errors in deployment can propagate through to incorrectly-positioned readings and then to poor decisions; system layering breaks down when exposed to uncertainty. How can we be assured a sensor system does what we intend, in a range of dynamic environments, and how can we make a system ``smarter'' ? Currently we cannot answer these questions because we are missing a science of sensor system software. We will develop the missing science that will allow us to engineer for the uncertainty inherent in real-world systems. We will deliver new principles and techniques for the development and deployment of verifiable, reliable, autonomous sensor systems that operate in uncertain, multiple and multi-scale environments. The science will be driven and validated by end-user and experimental applications.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/N012933/1
    Funder Contribution: 36,312 GBP

    This project aims to develop a low cost ground imaging system (PRIME - Proactive Infrastructure Monitoring and Evaluation) for remote monitoring of infrastructure earthwork assets. PRIME will assess the condition of the earthworks on a continuous 24/7 basis, helping to predict failures and enable timely intervention. Conventional asset monitoring involves examining the surface (either by people on the ground or from aerial photos) and using point sensors, like moisture content and tilt meters, which only give information in the immediate vicinity of the sensor. But PRIME will use geophysics to 'see inside' the earthworks, enabling volumetric tracking of moisture content changes and ground movement, and so identifying problems at a much earlier stage. The development of PRIME is driven by the increasing rate and severity of infrastructure earthwork failures. This is due to aging assets (many canal and rail earthworks are over a hundred years old) and more extreme weather events (e.g. the extreme rainfall during winter 2013-14). Asset failures are enormously expensive, costing hundreds of millions of pounds per year in the UK alone, not to mention risks to human health and disruption of services, transport systems and the wider economy. There is growing recognition among asset owners, managers, and consultants that remote monitoring technologies have the potential to reduce these costs and risks by providing continuous condition information and early warnings of failure. To this end, low-cost PRIME hardware has already been successfully developed and demonstrated during a pilot phase project. But in an operational environment, the processing and interpretation of the large volumes of data that PRIME will produce must be automated for the technology to be commercially viable. Manual oversight of the systems simply would not be able to deliver cost-effective near real-time condition assessments and early warnings over extended monitoring periods. To address this, the project aims to develop a fully-automated data processing, image analysis and decision support system for PRIME. Methods already used in medical physics will be employed to recognise conditions likely to give rise to failure and will automatically generate alarms. The near real-time interpretation of the earthwork condition will be provided by an end-user interface (the dashboard), which will also enable PRIME information to be exported to, and interface with, industry-standard monitoring systems. The system will be validated at two test sites on operational rail and waterways infrastructure, and its development will be steered by a broad consortium of stakeholders to ensure that the technology is fit-for-purpose. Implementation of the PRIME information delivery system will represent a step-change in asset condition monitoring, providing high frequency subsurface information at unprecedented resolution. This will facilitate a powerful new approach to near-real-time decision-support and early warning, which will provide the information necessary to implement low-cost early interventions and avoid catastrophic very high cost infrastructure failures. Moreover, the development and commercialisation of PRIME will enable specialist consultants and technology companies to provide cutting edge services and monitoring solutions. By the end of the project, the aim is to have developed and demonstrated PRIME technology to a point where it is ready to be translated to the commercial sector. Stakeholders: Arup; Atkins; Network Rail; Canal and River Trust; Scottish Canals; National Grid; HS2; Rail Safety and Standards Board (RSSB); ITM Monitoring; GeoSense; Transport Scotland. Keywords: Remote monitoring; early warning; subsurface information; geophysical imaging; environmental risks; infrastructure condition.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/P00914X/1
    Funder Contribution: 205,439 GBP

    Project Partners: Arup, Atkins, Canal & River Trust, Environment Agency, Geosense, High Speed Two, Highways England, ITM Monitoring, Kier, National Grid, Network Rail, Rail Safety & Standards Board, Scottish Canals, Transport Scotland. The Challenge: The development of the Proactive Infrastructure Monitoring and Evaluation (PRIME) system is driven by the increasing rate and severity of failures in flood defence, transportation, and utilities earthworks. This is due to aging assets (many canal and rail earthworks are over a hundred years old) and more extreme weather events (e.g. the extreme rainfall during winter 2013-14 & 2015-16). Asset failures are enormously expensive, costing hundreds of millions of pounds per year in the UK alone, not to mention risks to human health and disruption of transport systems, utilities and the wider economy. Assessment of the condition of geotechnical assets is essential for cost effective maintenance and prevention of hazardous failure events. Early identification of deteriorating condition generally allows low cost preventative remediation to be undertaken (post failure interventions are typically ten times more expensive) and reduces the risk of catastrophic failures. Conventional approaches to condition monitoring are often inadequate for predicting earthwork instability. They are heavily dependent on surface observations - i.e. walk-over surveys or airborne data collection. These approaches cannot detect the subsurface precursors to failure events; instead they identify failure once it has begun. There is growing recognition among infrastructure asset owners, managers, and consultants that automated monitoring technologies have the potential to reduce these costs and risks by providing continuous condition information and early warnings of failure. Aims & Objectives: The primary objective is to deliver a new remote condition monitoring and decision-support system for assessing the internal condition of safety critical geotechnical assets. This will be realised by implementing a fully automated software workflow for data analysis and information delivery, building upon the recently developed PRIME hardware platform. The integrated PRIME system (i.e. hardware & software) will combine emerging geophysical ground imaging technology with wireless telemetry, 'big data' handling, and web portal access. It will form the basis of a new generation of intelligent decision-support technology capable of 'seeing inside' vulnerable earthworks in near-real-time using diagnostic imaging methods routinely used in medical physics. By the end of this project, the software and hardware will be demonstrated to technology readiness level (TRL) 7 at new and existing stakeholder sites, ready for commercialisation and use by the wider stakeholder community. Benefits: The key benefits of PRIME to asset owners include cost savings through minimising unnecessary renewals and providing early warning of failure events, time savings associated with fewer manual site visits, and risk reduction by preventing dangerous earthworks failures, and minimising the need for people to enter potentially hazardous operational environments. Geotechnical monitoring providers, consultants & contractors will benefit through new cutting-edge geotechnical monitoring services and, for the first time, near-real-time volumetric subsurface monitoring information. Key Deliverables & Outputs: - New software to fully automate PRIME data processing and information delivery - including a web-based decision support dashboard. - Demonstration of the complete PRIME system at existing rail and waterways pilot sites, and new highways, power transmission and flood defence sites - establishing TRL 7 (demonstration in an operational environment). - A commercialisation strategy agreed with project partners to ensure technology translation to the stakeholder community. Duration: 18 months Cost: £183,000 (at 80% FEC)

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.