
Jacobs Engineering UK Ltd.
Jacobs Engineering UK Ltd.
15 Projects, page 1 of 3
assignment_turned_in Project2017 - 2022Partners:CEMEX UK Operations Ltd, Micropore Technologies, Cardiff University, Department for Transport, Atkins (United Kingdom) +48 partnersCEMEX UK Operations Ltd,Micropore Technologies,Cardiff University,Department for Transport,Atkins (United Kingdom),Welsh Government,Cardiff University,LUSAS (United Kingdom),Arup Group,Jacobs UK Limited,Atkins Global,Lambson Fine Chemicals Ltd,CEMEX,COSTAIN LTD,Mott Macdonald UK Ltd,Alun Griffiths (Contractors) Limited,Foseco International Ltd,Arup Group Ltd,Ove Arup & Partners Ltd,SABIC (Saudi Basic Industries Corp),Fosroc International Ltd (UK),Isle Utilities,Graphitene Ltd,Lambson Ltd,Graphitene Ltd,Building Research Establishment,Isle Utilities,Costain Ltd,Welsh Government,Travis Perkins,Micropore Technologies,Tarmac,Jacobs Engineering UK Ltd.,Alun Griffiths (Contractors) Limited,BRE Trust,Highways Agency,High Speed Two HS2 Ltd,High Speed Two HS2 Limited,Atkins Global (UK),CEMEX UK Operations Ltd,Travis Perkins,WELSH GOVERNMENT,SWECO UK,CH2M,National Highways,Mott Macdonald (United Kingdom),Tarmac,SWECO UK,BRE Trust (Building Res Excellence),Lusas,CARDIFF UNIVERSITY,Lusas,ch2mFunder: UK Research and Innovation Project Code: EP/P02081X/1Funder Contribution: 4,851,940 GBPThe vision of RM4L is that, by 2022 we will have achieved a transformation in construction materials, using the biomimetic approach first adopted in M4L, to create materials that will adapt to their environment, develop immunity to harmful actions, self-diagnose the on-set of deterioration and self-heal when damaged. This innovative research into smart materials will engender a step-change in the value placed on infrastructure materials and provide a much higher level of confidence and reliability in the performance of our infrastructure systems. The ambitious programme of inter-related work is divided into four Research Themes (RTs); RT1: Self-healing of cracks at multiple scales, RT2: Self-healing of time-dependent and cyclic loading damage, RT3: Self-diagnosis and immunisation against physical damage, and RT4: Self-diagnosis and healing of chemical damage. These bring together the four complementary technology areas of self-diagnosis (SD); self-immunisation and self-healing (SH); modelling and tailoring; and scaling up to address a diverse range of applications such as cast in-situ, precast, repair systems, overlays and geotechnical systems. Each application will have a nominated 'champion' to ensure viable solutions are developed. There are multiple inter-relationships between the Themes. The nature of the proposed research will be highly varied and encompass, amongst other things, fundamental physico-chemical actions of healing systems, flaws in potentially viable SH systems; embryonic and high-risk ideas for SH and SD; and underpinning mathematical models and optimisation studies for combined self-diagnosing/self-healing/self-immunisation systems. Industry, including our industrial partners throughout the construction supply chain and those responsible for the provision, management and maintenance of the world's built environment infrastructure will be the main beneficiaries of this project. We will realise our vision by addressing applications that are directly informed by these industrial partners. By working with them across the supply chain and engaging with complementary initiatives such as UKCRIC, we will develop a suite of real life demonstration projects. We will create a network for Early Career Researchers (ECRs) in this field which will further enhance the diversity and reach of our existing UK Virtual Centre of Excellence for intelligent, self-healing construction materials. We will further exploit established relationships with the international community to maximise impact and thereby generate new initiatives in a wide range of related research areas, e.g. bioscience (bacteria); chemistry (SH agents); electrochemical science (prophylactics); computational mechanics (tailoring and modelling); material science and engineering (nano-structures, polymer composites); sensors and instrumentation and advanced manufacturing. Our intention is to exploit the momentum in outreach achieved during the M4L project and advocate our work and the wider benefits of EPRSC-funded research through events targeted at the general public and private industry. The academic impact of this research will be facilitated through open-access publications in high-impact journals and by engagement with the wider research community through interdisciplinary networks, conferences, seminars and workshops.
more_vert assignment_turned_in Project2021 - 2024Partners:Land and Water Services Ltd, Boskalis, CARDIFF UNIVERSITY, Jacobs Engineering UK Ltd., Jacobs UK Limited +35 partnersLand and Water Services Ltd,Boskalis,CARDIFF UNIVERSITY,Jacobs Engineering UK Ltd.,Jacobs UK Limited,Chartered Institution of Wastes Mgt,Cardiff Harbour Authority,LC Energy,Cardiff Harbour Authority,Arup Group Ltd,Canal and River Trust,Dauson Environmental Group Limited,Cardiff University,Countryside Council for Wales,Forestry England,WSP Group plc,Forestry England,Ramboll UK,Chartered Institution of Wastes Mgt,Cardiff University,WSP Civils,SUEZ RECYCLING AND RECOVERY UK LTD,Mott Macdonald UK Ltd,Boskalis,Mott Macdonald (United Kingdom),Arup Group,Canal and River Trust,Ove Arup & Partners Ltd,RAM,Welsh Government,Vertase Fli,Vertase Fli,WELSH GOVERNMENT,Land and Water Services Ltd,WSP Group plc UK,Dauson Environmental Group Limited,Natural Resources Wales,Welsh Government,Natural Resources Wales,LC EnergyFunder: UK Research and Innovation Project Code: EP/T03100X/1Funder Contribution: 592,345 GBPThe UK faces serious strategic challenges with the future supply of aggregates, critical minerals and elements. At the same time, the UK must sustainably manage multimillion tonne annual arisings of industrial, mining and mineral wastes (IMMWs). The amount of these wastes generated is projected to increase over the coming years, particularly (i) ash from the combustion of biomass and municipal solid waste, and (ii) contaminated dredgings. These wastes will continue to be landfilled despite often containing valuable resources such as high concentrations of critical metals, soil macronutrients and useful mineral components, some of which actively drawdown atmospheric CO2. The fundamental aim of the ASPIRE (Accelerated Supergene Processes In Repository Engineering) research project is to develop a sustainable method by which ashes, contaminated dredgings and other IMMWs can be stripped of any valuable elements. These stripped elements would then be concentrated in an ore zone for later retrieval and the cleaned residues also returned to use, for example as aggregates, cement additives, or agricultural amendments (including those for carbon sequestration through enhanced mineral weathering). It is a very challenging problem to devise a truly sustainable method to achieve this is an economically viable way, and almost all processes suggested so far in the literature for leaching wastes are themselves carbon and chemical intensive and thus non-sustainable. We are proposing research that comprises the first steps in developing the "ASPIRE waste repository" concept with accelerated analogues of ore-forming "supergene" processes engineered in, such that the dormant waste undergoes processes to (i) concentrate valuable components (e.g. critical metals, phosphate) as an anthropogenic ore to facilitate their future recovery, and (ii) concurrently decontaminate residual mineral material so as to make it available as a bank of material to drawdown for "soft" uses in agriculture, silviculture, greenspace, landscaping in new developments, habitat creation and/or as a cement/concrete additive or replacement aggregate. The processes investigated rely on rainwater passing through a vegetated surface layer which releases naturally occurring compounds from the plant roots and/or other natural organic matter which then pass through and strip valuable elements from the IMMW. The mobilised elements will then pass into a capture zone where they will be stripped from solution and concentrated to form an artificial ore. The research project will seek to engineer the internal processes of the temporary storage waste repository to optimise this. At the same time the upper vegetated surface of the waste repository will serve as greenspace with commensurate ecological and amenity value for local populations. Among the key research challenges is in how to engineer the internal ASPIRE waste repository processes which rely on complex biogeochemical interactions and flow behaviour. Another critical research challenge is to develop an understanding of stakeholder and wider acceptability of this concept which does not fit with current legislation on waste management. With this project we seek to provide a circular technology solution for how we can sustainably manage the future multimillion tonne arisings of IMMW at a critical time as the UK government develops strategies and supporting regulation for the transition to a circular economy.
more_vert assignment_turned_in Project2023 - 2024Partners:University of Glasgow, GFZ Potsdam - Geosciences, Northeastern University - China, University of Glasgow, Jacobs Engineering UK Ltd. +4 partnersUniversity of Glasgow,GFZ Potsdam - Geosciences,Northeastern University - China,University of Glasgow,Jacobs Engineering UK Ltd.,GFZ German Research,Jacobs UK Limited,GFZ German Research,Northeastern University - ChinaFunder: UK Research and Innovation Project Code: EP/W031221/1Funder Contribution: 403,819 GBPNuclear power is low-carbon and green energy. It presently provides about 10% of the world's electricity and 20% of the UK's electricity, contributing enormously to global Net Zero emissions. Nuclear power will continue to play an important role in the global transition to a low carbon economy. However, one major disadvantage of nuclear power is that its generation process produces radioactive waste that can remain hazardous for hundreds of thousands of years. Over the past more than 60 years' utilisation of nuclear power in the UK and worldwide, many radioactive wastes have accumulated, most of which are stored temporarily in storage near nuclear power plants. It is vital for us to deal with the waste to protect human health and the environment. A global consensus has been reached in this area, that is to isolate radioactive waste that is incompatible with surface disposal permanently in suitable underground rock formations (i.e., host rocks) by developing a geological disposal facility (GDF). As also set out in the 2014 White Paper, the UK Government is committed to implementing geological disposal, with work on developing this led by Radioactive Waste Management Ltd (RWM). Developing a GDF relies on a stable rock formation to ensure mechanical stability and barrier function of host rocks. It is therefore essential to understand factors that influence the integrity of rocks. This is challenging partially because of the complexity of rock fractures that are widespread in the Earth upper crust. Although rock mechanical behaviour has a long record of study, attempts to understand the role of fractures on rock deformation still has unresolved issues. For example, natural rock fractures are often dealt with crudely; almost all previous studies of this problem assume rock fractures to be continuous, with zero or very small cohesion that can be neglected. However, it is almost a ubiquitous feature that natural rock fractures in the subsurface are incipient and heterogeneous, with considerable tensile strength and cohesion. This is either due to secondary minerals having recrystallised, bonding fracture surfaces together, or due to rock bridges. This INFORM project will focus on mineral-filled fractures (i.e., veins) that are frequently seen in the subsurface but often ignored or less researched so far. The aim of INFORM is to increase confidence in the design, construction, and operation of GDFs, by developing a mechanics-based multi-scale framework to understand the influence of fracture heterogeneity on the integrity and deformation behaviour of rocks across scales. The framework will integrate imaging analysis, laboratory experiments, numerical modelling, and field observations, to (1) determine factors contributing to fracture heterogeneity across scales, (2) understand the shear and triaxial deformational behaviour of veined rocks considering natural fracture geometry and heterogeneity, and (3) develop a field-scale model for repository structures considering fracture heterogeneity. Unlike most previous studies, which have focused on the influence of mechanical fractures on rock behaviour, INFORM will for the first time investigate the influence of natural veins, and will consider and implement these observations in the modelling of veined rock behaviour applied to a GDF. INFORM will "inform" a wide range of audiences with new insights through correlating micro-scale observations and macro-scale deformation of heterogenous veined and fractured rocks. This will be possible with the strong support of our academic and industrial partners (RWM, UK; Jacobs, UK; Northeastern University, China; GFZ, Germany; Stanford University, USA) and the help of our well-designed outreach and publication plans. INFORM will lead to a more accurate and reliable examination of fracture heterogeneity, which will not only directly benefit GDF R&D, but also broader rock engineering applications (e.g., tunnelling, cavern construction).
more_vert assignment_turned_in Project2017 - 2022Partners:Rovtech Solutions, UltraSoC Technologies Ltd, Jacobs UK Limited, Science and Technology Facilities Council, Shadow Robot Company Ltd +72 partnersRovtech Solutions,UltraSoC Technologies Ltd,Jacobs UK Limited,Science and Technology Facilities Council,Shadow Robot Company Ltd,Jet Propulsion Laboratory,TRTUK,Sellafield Ltd,EDF Energy Plc (UK),Korea Atomic Energy Research Institute (,Haption,AWE,AWE plc,Ionix Advanced Technologies Ltd,BAE Systems (Sweden),NUVIA LIMITED,Japan Atomic Energy Agency,IHI Corporation,Rolls-Royce Plc (UK),James Fisher Nuclear Limited,Ionix Advanced Technologies Ltd,Thales Aerospace,National Physical Laboratory NPL,Japan Atomic Energy Agency (JAEA),University of Birmingham,TREL,EDF Energy (United Kingdom),Atkins (United Kingdom),STFC - Laboratories,Synthotech,The Shadow Robot Company,Imitec Ltd,Toshiba Research Europe Ltd,Imitec Ltd,Atlas Elektronik UK Ltd,Forth Engineering Ltd,NPL,Tohoku University,Forth Engineering Ltd,STFC - LABORATORIES,British Energy Generation Ltd,Rolls-Royce (United Kingdom),Proudman Oceanographic Laboratory,Korea Atomic Energy Res Inst (KAERI),University of Birmingham,Eidos Education,Rolls-Royce (United Kingdom),BAE Systems (United Kingdom),Thales Research and Technology UK Ltd,RI,Synthotech,KUKA Robotics UK Limited,NOC (Up to 31.10.2019),Shield,James Fisher Nuclear Limited,Eidos Education,Atlas Elektronik UK,UltraSoC Technologies Ltd,Bae Systems Defence Ltd,NOC,Kuka Ltd,Haption,Jacobs Engineering UK Ltd.,JET Propulsion Laboratory,National Nuclear Laboratory (NNL),Rovtech Solutions,Royal Institution of Great Britain,IHI Corporation,Nuvia Limited,Atkins Ltd,Tohoku University,KUKA Robotics UK Limited,Sellafield Ltd,NNL,Shield,BAE Systems (UK),Atkins LtdFunder: UK Research and Innovation Project Code: EP/R02572X/1Funder Contribution: 12,256,900 GBPNuclear facilities require a wide variety of robotics capabilities, engendering a variety of extreme RAI challenges. NCNR brings together a diverse consortium of experts in robotics, AI, sensors, radiation and resilient embedded systems, to address these complex problems. In high gamma environments, human entries are not possible at all. In alpha-contaminated environments, air-fed suited human entries are possible, but engender significant secondary waste (contaminated suits), and reduced worker capability. We have a duty to eliminate the need for humans to enter such hazardous environments wherever technologically possible. Hence, nuclear robots will typically be remote from human controllers, creating significant opportunities for advanced telepresence. However, limited bandwidth and situational awareness demand increased intelligence and autonomous control capabilities on the robot, especially for performing complex manipulations. Shared control, where both human and AI collaboratively control the robot, will be critical because i) safety-critical environments demand a human in the loop, however ii) complex remote actions are too difficult for a human to perform reliably and efficiently. Before decommissioning can begin, and while it is progressing, characterization is needed. This can include 3D modelling of scenes, detection and recognition of objects and materials, as well as detection of contaminants, measurement of types and levels of radiation, and other sensing modalities such as thermal imaging. This will necessitate novel sensor design, advanced algorithms for robotic perception, and new kinds of robots to deploy sensors into hard-to-reach locations. To carry out remote interventions, both situational awareness for the remote human operator, and also guidance of autonomous/semi-autonomous robotic actions, will need to be informed by real-time multi-modal vision and sensing, including: real-time 3D modelling and semantic understanding of objects and scenes; active vision in dynamic scenes and vision-guided navigation and manipulation. The nuclear industry is high consequence, safety critical and conservative. It is therefore critically important to rigorously evaluate how well human operators can control remote technology to safely and efficiently perform the tasks that industry requires. All NCNR research will be driven by a set of industry-defined use-cases, WP1. Each use-case is linked to industry-defined testing environments and acceptance criteria for performance evaluation in WP11. WP2-9 deliver a variety of fundamental RAI research, including radiation resilient hardware, novel design of both robotics and radiation sensors, advanced vision and perception algorithms, mobility and navigation, grasping and manipulation, multi-modal telepresence and shared control. The project is based on modular design principles. WP10 develops standards for modularisation and module interfaces, which will be met by a diverse range of robotics, sensing and AI modules delivered by WPs2-9. WP10 will then integrate multiple modules onto a set of pre-commercial robot platforms, which will then be evaluated according to end-user acceptance criteria in WP11. WP12 is devoted to technology transfer, in collaboration with numerous industry partners and the Shield Investment Fund who specialise in venture capital investment in RAI technologies, taking novel ideas through to fully fledged commercial deployments. Shield have ring-fenced £10million capital to run alongside all NCNR Hub research, to fund spin-out companies and industrialisation of Hub IP. We have rich international involvement, including NASA Jet Propulsion Lab and Carnegie Melon National Robotics Engineering Center as collaborators in USA, and collaboration from Japan Atomic Energy Agency to help us carry out test-deployments of NCNR robots in the unique Fukushima mock-up testing facilities at the Naraha Remote Technology Development Center.
more_vert assignment_turned_in Project2013 - 2017Partners:Jacobs Engineering UK Ltd., University of Exeter, UNIVERSITY OF EXETER, WSP Buildings Ltd, Jacobs UK Limited +2 partnersJacobs Engineering UK Ltd.,University of Exeter,UNIVERSITY OF EXETER,WSP Buildings Ltd,Jacobs UK Limited,University of Exeter,WSP Buildings LtdFunder: UK Research and Innovation Project Code: EP/J004081/2Funder Contribution: 767,666 GBPThere is an inexorable trend for civil engineering structures to become more slender and lightweight, as engineers strive to design more efficient structures with reduced economic cost, reduced carbon footprint and increased flexibility of usage. Unfortunately, due to their reduced mass and stiffness these structures are inherently lively and there is a desperate need for advanced technologies that are capable of ensuring satisfactory vibration performance when people walk, run and jump on them. There are two key issues to address: (1) Technologies are required to deal with existing vibration problems, which are increasingly and widely observed in structures such as floors, footbridges, sports stadia and staircases. Currently available technologies are insufficient to deal with the majority of these problems, which means that extensive and low-tech structural modification schemes have to be employed that are both expensive and highly disruptive. (2) If the ambitions of structural engineers for ever more slender and efficient structures are to be realised, it will be necessary to 'design in' advanced methods of vibration control when developing new structures. This is because many contemporary structures are already being designed at their limits of vibration acceptability. Unfortunately, the new technologies required for this transformative design approach are not yet available. In the last five years, the applicant and his team have carried out exciting research into active control of vibration in floor structures, in which large reductions in vibration have been achieved that are not possible using other floor control technologies. They have also demonstrated that significant material savings may be made using this technology, which has the potential to significantly reduce the carbon footprint of new buildings. This is the main vision for this fellowship and the future, where advanced and intelligent vibration control strategies will become commonplace in structures subject to human dynamic loading. However, a solution that works for floor vibrations from a single person walking is not necessarily going to work for a sports stadium with many thousands of people jumping during a rock concert. Hence, what is required is a required is a complete 'suite' of control technologies, from which the most appropriate solution may be chosen and implemented for any particular vibration problem. In these days of active noise cancelling headphones and semi-active vehicle suspension systems, it is time for these advanced technologies to find their place in civil structural engineering, to solve the unique problems of human-induced vibration. Hence, in this research a comprehensive framework of technologies will be developed, so that the most appropriate technologies may be selected for a particular application. This will be the first time in the world that such a holistic approach has been taken to mitigation of human-induced vibrations. Fundamental research into a range of these technologies, including active, semi-active and hybrid vibration control techniques will be carried out to prove their viability in the civil engineering sector through analytical modelling, laboratory testing and in-the-field implementation. Finally, extensive industrial liaison and public outreach activities are planned to ensure the take-up of these technologies, which is the key way in which this research will benefit UK plc.
more_vert
chevron_left - 1
- 2
- 3
chevron_right