
TNO Delft, Optica
TNO Delft, Optica
2 Projects, page 1 of 1
assignment_turned_in Project2019 - 9999Partners:TNO Den Haag, TNO Delft, Optica, Erasmus MC, Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, Department of Imaging Physics, Erasmus MC, Daniel den Hoed Kliniek, Radiotherapie +8 partnersTNO Den Haag,TNO Delft, Optica,Erasmus MC,Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, Department of Imaging Physics,Erasmus MC, Daniel den Hoed Kliniek, Radiotherapie,TNO Den Haag, Acoustics & Sonar,TNO Delft,Technische Universiteit Delft,Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, Department of Imaging Physics, Medical Imaging (MI),Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, Radiation Science and Technology,TNO Delft,TNO Rijswijk,TNO Rijswijk, Preventie en Gezondheid, Verouderingsonderzoek / FarmacologieFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: NWA.1160.18.095Background: Cancer is first-leading cause of adult deaths. Radiation therapy based on x-rays cure approximately 50% of all cancer patients and is a fundamental pillar in cancer treatment. But, collateral damage of healthy surrounding tissues is unavoidable. Proton beams differ from x-rays by the fact that their penetration depth is sharply determined and release their energy at the Bragg peak. The problem: In proton beam therapy the dosimetry is determined by simulations of the proton deposition in the tissue. However, organ movement and errors in the assumed material properties lead to inaccuracy of the deposition. The Solution: We propose a non-invasive, in-situ, real-time localization system for proton therapy monitoring using ultrasound contrast agents and highly sensitive optical-acoustical receivers. Our concept consists of two innovative steps. The first step is the interaction of the proton beam with a medical ultrasound contrast agent consisting of coated microbubbles. The energy deposition from individual protons in the Bragg peak creates a broadband excitation in the vicinity of the bubble forcing them to vibrate at their resonance frequency (1-10 MHz). This creates a low amplitude pressure wave that can be used for localization and dose measurement of the proton beam. The second step entails the development of an array of ultra-sensitive acousto-optical ultrasound sensors for detecting the acoustic pressure waves generated by the microbubbles, which is one order of magnitude below the detection limit of current state-of-the-art ultrasonic sensors. Acousto-optical sensors consist of a silicon chip with an extremely thin membrane that will already be deflected by very small acoustic pressure amplitudes. This deflection will be detected by a micro-optical circuit that is integrated on the membrane. Using the microbubbles and these highly sensitive receivers allows for a real-time monitoring of the proton deposition with a spatial resolution better than 1 mm.
more_vert assignment_turned_in ProjectFrom 2023Partners:Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Institute for Molecules and Materials (IMM), FELIX Laboratory, NWO-institutenorganisatie, ASTRON - Netherlands Institute for Radio Astronomy, Technische Universiteit Eindhoven - Eindhoven University of Technology, Radboud Universiteit Nijmegen, Rijksuniversiteit Groningen +26 partnersRadboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Institute for Molecules and Materials (IMM), FELIX Laboratory,NWO-institutenorganisatie, ASTRON - Netherlands Institute for Radio Astronomy,Technische Universiteit Eindhoven - Eindhoven University of Technology,Radboud Universiteit Nijmegen,Rijksuniversiteit Groningen,Radboud Universiteit Nijmegen,Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Instituut voor Kunstmatige Intelligentie,Rijksuniversiteit Groningen,TNO Delft, Optica,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Institute for Computing and Information Sciences (ICIS),Universiteit Twente,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Electrical Engineering - Department of Electrical Engineering, Electro-Optical Communication (ECO),Technische Universiteit Delft, Universiteitsdienst, Dienst Elektronische en Mechanische Ontwikkeling (DEMO),Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Electrical Engineering - Department of Electrical Engineering, Electronic Systems (ES),Technische Universiteit Delft,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Subfaculteit Natuurkunde, Experimentele Vaste Stof Fysica,Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Zernike Institute for Advanced Materials,Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), MESA+ Research Institute for Nanotechnology,NWO-institutenorganisatie, AMOLF,Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Zernike Institute for Advanced Materials, Physics of nanodevices,Universiteit Twente,Fontys University of Applied Sciences,Universiteit Twente, Faculty of Science and Technology (TNW), Chemical Engineering, Inorganic Materials Science (IMS),TNO Delft,Technische Universiteit Delft,Technische Universiteit Eindhoven - Eindhoven University of Technology,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Technische Natuurkunde - Department of Applied Physics, Physics of Nanostructures (FNA),NWO-institutenorganisatie,Saxion,Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE),Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Institute for Molecules and Materials (IMM)Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: NWA.1389.20.140The energy consumption of today’s Information Technology presents a key bottleneck for computer systems to go forward and has risen to unsustainable levels that seriously affect climate change. In a holistic approach between academia, industry and society, NL-ECO aims at scientific and technological breakthroughs, including demonstrators, that will dramatically reduce this energy consumption with orders of magnitude. As inspiration we have an enticing benchmark, the brain: while consuming hardly 20 Watts, it outperforms, on specific tasks such as learning and pattern recognition, multi-megawatt supercomputers.
more_vert