Powered by OpenAIRE graph
Found an issue? Give us feedback

Torr Scientific Ltd

Torr Scientific Ltd

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/Z533166/1
    Funder Contribution: 21,369,600 GBP

    Quantum sensing, imaging and timing will deliver transformative advancements across multiple sectors, including healthcare, infrastructure, transportation, environmental sustainability and security. These technologies make seeing the invisible possible: the inside workings of our brains, the infrastructure buried beneath our feet, the polluting gases in the air around us, the cancers lurking in our tissue or the drones in our crowded skies. These are some of the challenges we are poised to address. Our Hub in Quantum Sensing Imaging and Timing (QuSIT) brings together academic experts and industry partners, collaborating to translate cutting-edge research into tangible innovations. QuSIT will capitalise on a decade of substantial governmental and industrial investments, consolidating expertise and world-class capability from two established UK Hubs: QuantIC, specialising in quantum-enhanced imaging and the UK Sensing and Timing Hub. QuSIT will be a unified centre of excellence, providing thought leadership within the UK's quantum technology landscape, crucial to the National Quantum Strategy. At the heart of QuSIT is a world-leading and diverse team of 45 investigators, comprising both emerging talents and seasoned experts. Their impressive academic track record is complemented by a shared commitment to translating innovation from the laboratory to address real-world challenges. Our researchers have a history of licensing technology to industry and launching their own ventures. The technologies we will exploit are based on both atomic states and entangled photons to create quantum devices that sense and image otherwise invisible optical wavelengths, radio-frequencies, magnetic and gravitational fields, and exploit precision time, including: Optical wavelength translation using non-linear interferometry and non-linear optics Atom interferometry for gravity and gravity gradient sensing Waveguide optics for wavelength conversion Optically pumped magnetometers for zero and high absolute fields Metasurfaces for lightweight and compact optics Wavefront shaping for seeing through obscuration Data fusion of quantum and classical sensor data, using AI and Bayesian Inference Quantum enabled frequency sources to enhance radar systems Our approach revolves around co-creating research with end-users, fostering collaborations between academics and industry players throughout the supply chain, and rigorously testing and refining our innovations through field trials in partnership with our collaborating companies, pursuing new approaches to: Line-of-sight imaging of polluting, or toxic gases and chemicals Monitoring of brain health Screening for concealed and dangerous objects Imaging of underground infrastructure Mid-infrared, holographic microscopes for clinical diagnosis Application of precise timing for the monitoring of congested airspace The hub is supported by companies and other end-users many of which have made significant investments. These include BT, BAE Systems, Department for Transport, Great Ormond Street Hospital, National Grid, National Physical Laboratory, Ordnance Survey and Severn Trent Water. In the increasingly competitive international landscape, QuSIT will provide the vision and have the convening power required to ensure that the UK remains at the forefront of quantum technology internationally, delivering accelerated economic growth and societal benefits through collaboration between academia and industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T001046/1
    Funder Contribution: 28,537,600 GBP

    The Quantum Technology Hub in Sensors and Timing, a collaboration between 7 universities, NPL, BGS and industry, will bring disruptive new capability to real world applications with high economic and societal impact to the UK. The unique properties of QT sensors will enable radical innovations in Geophysics, Health Care, Timing Applications and Navigation. Our established industry partnerships bring a focus to our research work that enable sensors to be customised to the needs of each application. The total long term economic impact could amount to ~10% of GDP. Gravity sensors can see beneath the surface of the ground to identify buried structures that result in enormous cost to construction projects ranging from rail infrastructure, or sink holes, to brownfield site developments. Similarly they can identify oil resources and magma flows. To be of practical value, gravity sensors must be able to make rapid measurements in challenging environments. Operation from airborne platforms, such as drones, will greatly reduce the cost of deployment and bring inaccessible locations within reach. Mapping brain activity in patients with dementia or schizophrenia, particularly when they are able to move around and perform tasks which stimulate brain function, will help early diagnosis and speed the development of new treatments. Existing brain imaging systems are large and unwieldy; it is particularly difficult to use them with children where a better understanding of epilepsy or brain injury would be of enormous benefit. The systems we will develop will be used initially for patients moving freely in shielded rooms but will eventually be capable of operation in less specialised environments. A new generation of QT based magnetometers, manufactured in the UK, will enable these advances. Precision timing is essential to many systems that we take for granted, including communications and radar. Ultra-precise oscillators, in a field deployable package, will enable radar systems to identify small slow-moving targets such as drones which are currently difficult to detect, bringing greater safety to airports and other sensitive locations. Our world is highly dependent on precise navigation. Although originally developed for defence, our civil infrastructure is critically reliant on GNSS. The ability to fix one's location underground, underwater, inside buildings or when satellite signals are deliberately disrupted can be greatly enhanced using QT sensing. Making Inertial Navigation Systems more robust and using novel techniques such as gravity map matching will alleviate many of these problems. In order to achieve all this, we will drive advanced physics research aimed at small, low power operation and translate it into engineered packages to bring systems of unparalleled capability within the reach of practical applications. Applied research will bring out their ability to deliver huge societal and economic benefit. By continuing to work with a cohort of industry partners, we will help establish a complete ecosystem for QT exploitation, with global reach but firmly rooted in the UK. These goals can only be met by combining the expertise of scientists and engineers across a broad spectrum of capability. The ability to engineer devices that can be deployed in challenging environments requires contributions from physics electronic engineering and materials science. The design of systems that possess the necessary characteristics for specific applications requires understanding from civil and electronic engineering, neuroscience and a wide range of stakeholders in the supply chain. The outputs from a sensor is of little value without the ability to translate raw data into actionable information: data analysis and AI skills are needed here. The research activities of the hub are designed to connect and develop these skills in a coordinated fashion such that the impact on our economy is accelerated.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.