
Monsanto UK Limited
Monsanto UK Limited
8 Projects, page 1 of 2
assignment_turned_in Project2007 - 2008Partners:Monsanto (United Kingdom), Monsanto UK Limited, University of Edinburgh, Roslin InstituteMonsanto (United Kingdom),Monsanto UK Limited,University of Edinburgh,Roslin InstituteFunder: UK Research and Innovation Project Code: BB/E528352/1Funder Contribution: 70,820 GBPDoctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9aaabce46aa1f74f7559228df00f221d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9aaabce46aa1f74f7559228df00f221d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2020Partners:BASF PLC, SOYL, Telespazio Vega, Lancaster University, Lancaster University +6 partnersBASF PLC,SOYL,Telespazio Vega,Lancaster University,Lancaster University,Telespazio Vega,Finmeccanica (United Kingdom),SOYL,Monsanto UK Limited,BASF Coatings Ltd,Monsanto (United Kingdom)Funder: UK Research and Innovation Project Code: BB/P004555/1Funder Contribution: 557,048 GBPSevere weather can cause cereal and oilseed rape crops to become uprooted or their stems to break, a process called lodging. This means that the crops do not grow to their full potential, the quantity of seed they produce (the yield) is substantially reduced and the quality of the grain decreases meaning that it cannot be used for certain purposes such as bread making. Lodging makes crops more susceptible to infection by fungi which can produce toxic chemicals which render the grain unusable. These impacts of lodging can substantially reduce the value of a crop and there can be additional costs of drying the grain harvested from lodged crops. Hence, it is estimated that lodging can cost UK farmers £170M in a severe lodging year. High winds can also cause oilseed rape pods to shatter which releases the seeds and they cannot be harvested. This costs UK farmers in excess of £7M per year. By taking appropriate action (e.g. choice of crop variety and how it is managed) it is possible for farmers to reduce the likelihood of lodging and pod shatter. However, farmers need information to guide their decisions and currently this is largely absent. This project will develop a computerised system for predicting the risks of lodging and pod shatter. It will be based on a model of how crops behave under conditions of high wind speed and soil moisture that will be developed from field experiments. The system will calculate the distribution of lodging and pod shatter across a farm that is likely to occur under severe weather conditions. This information is useful to farmers for developing plans in advance of a growing season. It will show farmers how weather damage can be reduced by selecting particular crop varieties to plant in particular fields and by adjusting the timing and density of seed planting. The system will also support farmers to make decisions within a growing season. To do this it will use satellite images to monitor the growth of crops early in the growing season and use this information together with scenarios of different weather conditions during the season to predict which fields or parts of fields are likely to be damaged by weather. This will allow farmers to take action to avoid weather damage in vulnerable fields or parts of fields by controlling the growth of crops (by altering the timing or amount of fertiliser and chemical growth regulators) and by applying chemical pod sealants. Later in the growing season the computerised system will download short-range weather forecast information and use this to predict the risks of lodging in the forthcoming weather conditions. If certain fields are predicted to be vulnerable to lodging then the farmer can arrange to harvest those fields before lodging occurs. Overall, the decision-support tool produced by this project will enable farmers to reduce the risks of weather damage to crops. This will increase farmer's capacity to produce food and reduce unnecessary use of chemicals and energy on farms which will be beneficial for the environment.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::895543d390571fae6b2a77ca83c338c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::895543d390571fae6b2a77ca83c338c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2013 - 2014Partners:University of York, Velcourt Ltd, Cargill Plc (UK), Saaten Union (United Kingdom), Velcourt (United Kingdom) +11 partnersUniversity of York,Velcourt Ltd,Cargill Plc (UK),Saaten Union (United Kingdom),Velcourt (United Kingdom),Fuchs (United Kingdom),Home Grown Cereals Authority,Saaten Union UK Ltd,KWS (United Kingdom),Monsanto UK Limited,Cargill Plc,CPB Twyfords,Monsanto (United Kingdom),FUCHS Lubricants UK Plc,University of York,Home Grown Cereals AuthorityFunder: UK Research and Innovation Project Code: BB/F015798/2Funder Contribution: 103,976 GBPBio-lubricants have both environmental and technical advantages over their counterparts derived from mineral oils. In addition to being renewable, they are biodegradable, have lower volatile emissions and low environmental toxicity. They provide superior anti-wear protection and exhibit reduced combustibility. In addition, bio-lubricants have lower coefficients of friction, which results in reduced energy costs for equipment in which bio-lubricants as used. Although vegetable oils are used in blending some less stressed lubricants, their thermal stability is inadequate for the majority of applications as a consequence of the presence of excessive polyunsaturation of their constituent fatty acids. In view of the poor stability of conventional refined rapeseed oil, lubricant blenders currently favour the use of synthetic esters with a high renewables content of the production of the more stressed lubricant types; this more expensive base oil currently inhibits uptake of bio-lubricants by end users. Rapeseed oil has many physical and chemical properties that are advantageous for base oil for the lubricants industry. However, the total content of polyunsaturated fatty acids remains too high and the resulting instability is the principal barrier to its widespread use. The target set by the industry is reduction to less than 5% total PUFAs, whilst retaining the other desirable physical and chemical properties of rapeseed oil. To be economically competitive, some yield penalty in the crop and increased processing costs can be tolerated, as its principal competitor in the market place, low PUFA sunflower oil, is presently priced at up to $120/tonne more on the commodity markets. Nevertheless, the approaches we propose should result in little, if any, yield loss from fully developed varieties. The purpose of the project is to underpin the development of oilseed rape varieties for the production of oil for use in the lubricants industry. A key knowledge gap is an understanding of how to substantially reduce the content of polyunsaturated fatty acids in rapeseed oil without reducing the oil yield of the crop. We will address this knowledge gap and enable establishment of a closed supply chain. This involves: (a) The genetic improvement of oilseed rape by mutagenesis of specific genes in order to produce, from a high-yielding winter crop, oil very low in polyunsaturated fatty acids. (b) Assessment of the physical properties of the oil produced in order to validate its utility. (c) Provision of characterised oilseed rape lines to the breeding industry for the development of cultivars. (d) Catalysing assembly of a supply chain. The strategy is non-GM, so we anticipate no barriers to the widespread utilization of the resultant varieties in the UK.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::29ba25340ef9ddff78a4f5b196200440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::29ba25340ef9ddff78a4f5b196200440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2013Partners:FUCHS Lubricants UK Plc, Saaten Union (United Kingdom), JIC, Monsanto (United Kingdom), Agriculture and Horticulture Development Board +12 partnersFUCHS Lubricants UK Plc,Saaten Union (United Kingdom),JIC,Monsanto (United Kingdom),Agriculture and Horticulture Development Board,Monsanto UK Limited,Cargill Plc (UK),KWS (United Kingdom),Velcourt (United Kingdom),Velcourt Ltd,Home Grown Cereals Authority,Saaten Union UK Ltd,Fuchs (United Kingdom),Home Grown Cereals Authority,John Innes Centre,CPB Twyfords,Cargill PlcFunder: UK Research and Innovation Project Code: BB/F015798/1Funder Contribution: 428,914 GBPBio-lubricants have both environmental and technical advantages over their counterparts derived from mineral oils. In addition to being renewable, they are biodegradable, have lower volatile emissions and low environmental toxicity. They provide superior anti-wear protection and exhibit reduced combustibility. In addition, bio-lubricants have lower coefficients of friction, which results in reduced energy costs for equipment in which bio-lubricants as used. Although vegetable oils are used in blending some less stressed lubricants, their thermal stability is inadequate for the majority of applications as a consequence of the presence of excessive polyunsaturation of their constituent fatty acids. In view of the poor stability of conventional refined rapeseed oil, lubricant blenders currently favour the use of synthetic esters with a high renewables content of the production of the more stressed lubricant types; this more expensive base oil currently inhibits uptake of bio-lubricants by end users. Rapeseed oil has many physical and chemical properties that are advantageous for base oil for the lubricants industry. However, the total content of polyunsaturated fatty acids remains too high and the resulting instability is the principal barrier to its widespread use. The target set by the industry is reduction to less than 5% total PUFAs, whilst retaining the other desirable physical and chemical properties of rapeseed oil. To be economically competitive, some yield penalty in the crop and increased processing costs can be tolerated, as its principal competitor in the market place, low PUFA sunflower oil, is presently priced at up to $120/tonne more on the commodity markets. Nevertheless, the approaches we propose should result in little, if any, yield loss from fully developed varieties. The purpose of the project is to underpin the development of oilseed rape varieties for the production of oil for use in the lubricants industry. A key knowledge gap is an understanding of how to substantially reduce the content of polyunsaturated fatty acids in rapeseed oil without reducing the oil yield of the crop. We will address this knowledge gap and enable establishment of a closed supply chain. This involves: (a) The genetic improvement of oilseed rape by mutagenesis of specific genes in order to produce, from a high-yielding winter crop, oil very low in polyunsaturated fatty acids. (b) Assessment of the physical properties of the oil produced in order to validate its utility. (c) Provision of characterised oilseed rape lines to the breeding industry for the development of cultivars. (d) Catalysing assembly of a supply chain. The strategy is non-GM, so we anticipate no barriers to the widespread utilization of the resultant varieties in the UK.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cafc52590e9d600a85f7c41174a98c4a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cafc52590e9d600a85f7c41174a98c4a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2011 - 2015Partners:RAGT Seeds (United Kingdom), Syngenta Ltd, AHDB-HGCA, LVH UK, National Inst of Agricultural Botany +14 partnersRAGT Seeds (United Kingdom),Syngenta Ltd,AHDB-HGCA,LVH UK,National Inst of Agricultural Botany,Monsanto (United Kingdom),KWS (United Kingdom),Monsanto UK Limited,AHDB-HGCA,Frontier Agriculture,Nickerson Ltd,KWS UK Ltd,Frontier Agriculture,Agriculture and Horticulture Development Board,Syngenta (United Kingdom),BASF AG,RAGT Seeds Ltd,BASF plc UK,National Institute of Agricultural BotanyFunder: UK Research and Innovation Project Code: BB/H014381/1Funder Contribution: 225,973 GBPThis proposal for LINK funded project will build on a solid base of work currently underway, funded through existing LINK programmes, BBSRC, directly by industry, the Scottish Government and the NIAB Trust fund. The proposed study will seek to initiate a better understanding of wheat root growth, morphology and functional relationships with nutrient and water uptake. Methods to describe roots in a diverse range of winter wheat types will be implemented in controlled glasshouse conditions and in the field. The project will form the foundation for improving nutrient sequestration and conversion in this important UK crop through initiation of pre-breeding and development of ideal root ideotypes suitable for use in current and future wheat production. The consortium will concentrate on efficient or enhanced use of resources, especially nitrogen and phosphate and will consider interactions with water availability. In addition, the importance of interactions with beneficial mycorrhizal fungi on nutrient sequestration and the negative impact of soil-borne pathogenic fungi on susceptible genotypes will be considered under field conditions. Finally, the potential impact of agrochemical seed coats on root performance will be assessed. Overall, research in root biology leading to increases in nutrient uptake efficiency will contribute to reductions in diffuse pollution and will substantially reduce green house gas emission due a reduction in the use of nitrogen fertilisers in wheat cultivation
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1fd6ca2f7fe6f8879b9f097e695db178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1fd6ca2f7fe6f8879b9f097e695db178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right