
National Institute of Standards and Tech
National Institute of Standards and Tech
6 Projects, page 1 of 2
assignment_turned_in Project2015 - 2017Partners:Columbia University, QMUL, Columbia University, National Institute of Standards and Tech, Cambridge Display Technology Ltd (CDT) +4 partnersColumbia University,QMUL,Columbia University,National Institute of Standards and Tech,Cambridge Display Technology Ltd (CDT),National Institute of Standards and Technology,CDT,Columbia University,National Institute of Standards and TechFunder: UK Research and Innovation Project Code: EP/M029506/1Funder Contribution: 99,704 GBPOne of the ultimate goals in nanotechnology is the ability to produce devices based on individual molecules and nanostructures. Molecular electronics, devices that are based on single-molecules, could overcome technological limitations of current silicon-based electronic devices, and fulfill complementary technological roles. Despite the many potential benefits envisioned for molecular-scale electronics, the strategies employed to date for device implementation suffer from various limitations, resulting in devices with poor performance, low yield and limited versatility. Principal among these limitations are the time and cost involved in fabrication, the poor control over the molecular assembly, and the lack of suitable technologies for the establishment of electrical contact between molecules and electrodes. Thus many challenges remain. The primary goal of this project is to develop a universal approach for the production of high-throughput solution processable single-molecule nanodevices, for optoelectronic and renewable energy applications. We will achieve this applying novel methods to interface individual molecules to carbon nano-electrodes in solution, and subsequently controlling the organization of the so formed molecular junctions on surfaces for device implementation. Different classes of molecular materials both organic and inorganic, which display promising attributes, will be investigated in device configurations. By approaching the limits of information processing, the strategy we propose has the potential to create a new generation of single-molecule multifunctional systems, and drastically reduce costs associated with device and circuit fabrication. Future technologies will require devices of this type in a variety of key areas, including ultra-high speed computation, bioelectronics, and for renewable energy applications.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b2b20c897c9c513ebdc5f798ff90653d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b2b20c897c9c513ebdc5f798ff90653d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2026Partners:Joint Institute for Laboratory Astrophysics, The University of Manchester, Inst of Photonic Physics ICFO, University of Salford, University of Warwick +6 partnersJoint Institute for Laboratory Astrophysics,The University of Manchester,Inst of Photonic Physics ICFO,University of Salford,University of Warwick,Inst of Photonic Physics ICFO,National Institute of Standards and Tech,Institute of Photonic Sciences,National Inst. of Standards & Technology,University of Warwick,University of ManchesterFunder: UK Research and Innovation Project Code: EP/V007033/1Funder Contribution: 1,289,900 GBPTwo-dimensional materials (2DM), derived from bulk layered crystals with covalent intra-layer bonding and weak van der Waals (vdW) interlayer coupling, offer a versatile playground for creating quantum materials with properties tailored for particular applications. This is achieved by combining different atomically thin 2DM crystals into heterostructures layer-by-layer in a chosen sequence. Unlike conventional crystal growth, this technique is not limited by lattice matching or interface chemistry, hence, it enables us to build heterostructures from several dozens of readily available vdW crystals with diverse physical properties (electronic, optical or magnetic). This platform offers broadly acknowledged potential for the realisation of nano-devices and designer meta-materials with new properties and functionalities determined by the coupling of adjacent layers, including interlayer band hybridisation and strong proximity effects. A new degree of freedom for controlling the properties of vdW heterostructures is the mutual crystal rotation - twist - of the constituent 2D crystals. Together with the lattice mismatch of the adjacent 2D crystals it gives rise to the moiré superlattice (mSL): a periodic variation of the local atomic registry, with the period controlled by the twist angle. Even a small twist can lead to remarkable changes in the properties of heterostructures - for instance, in homobilayers of 2DM it leads to strong spectrum reconstruction and formation of electron and hole minibands. So far, the breakthrough studies of moiré superlattices have been focused on graphene heterostructures with hexagonal boron nitride and on twisted graphene bilayers. Recently, initial exploration of twisted layers of transition metal dichalcogenides have begun, featuring four letters in a single issue of Nature in March 2019 (in one of those the members of this consortium have reported moire minibands for excitons). Not surprisingly, these recent developments have fuelled a world-wide race to develop this new field of materials science and solid state physics, branded as 'twistronics'. This project will pioneer the new scientific area of twistronics in novel types of 2DM heterostructures, mapping out the limits to which one can control their properties through the interlayer proximity and moiré superlattice effects. Using this approach, we aim to engineer flat electronic bands in semiconducting 2DM heterostructures, promoting quantum many-body effects, which we will explore through quantum transport and optical studies. Furthermore, we will realise the world-first twisted bilayers of new emerging 2DMs that exhibit strongly correlated states in their natural form ((anti)ferromagnetic, charge-density waves, or superconductivity) and explore novel physics in those system with an outlook for practical applications. In all material combinations, we will look into two distinct cases of (1) intermediate twist angles, where lattices are expected to behave as rigid solids, producing smooth variation in interlayer registry and (2) small twist angles where we have recently found that twisted 2D materials reconstruct to form extended commensurate domains separated by stacking faults. To achieve the ambitious and game-changing goals of this proposal, the consortium will employ a recently commissioned world-first nanofabrication facility, which allows assembly of van der Waals heterostructures in ultra-high vacuum. This unique instrument will provide the game-changing quality materials necessary for this project. Funding of this proposal will allow us to fully employ the potential of this new instrument and deliver ground-breaking new research and disruptive technologies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cfebe2cca87a30c8dc8bdbb092e0babf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cfebe2cca87a30c8dc8bdbb092e0babf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2013 - 2016Partners:Lancaster University, National Inst. of Standards & Technology, National Institute of Standards and Technology, Space Research Organisation Netherlands, National Institute for Aerospace Technology +6 partnersLancaster University,National Inst. of Standards & Technology,National Institute of Standards and Technology,Space Research Organisation Netherlands,National Institute for Aerospace Technology,Netherlands Institute for Space Research,NWO,National Institute of Standards and Tech,Lancaster University,SRON,National Inst for Aerospace Tech INTAFunder: UK Research and Innovation Project Code: EP/K001507/1Funder Contribution: 315,281 GBPSummary The proposal is primarily a theoretical project aimed at resolving several of the most important outstanding problems associated with a promising type of cryogenic detector, the superconducting Transition Edge Sensor (TES), which offers unique capabilities far exceeding that of traditional semiconductor technology. Over the past decade TES-based detectors have found application in diverse areas from dark matter searches, X-ray astrophysics, time-resolved X-ray absorption spectroscopy, quantum information processing, biological sensors, industrial material analysis and homeland security. Practical instruments require a complex optimization of speed, linearity, energy resolution and array size. However, lack of understanding of the superconducting transition in TESs limits our ability to optimise performance and predict the behaviour of a new detector designs. The present models of TESs have played an important role during a period of extensive development of technology. However, based on empirical observations the models lack knowledge of the fundamental details of superconductivity, which determine the transition, and ultimately the performance of TESs. They cannot explain the observable energy resolution, and such fundamental properties as recently-discovered weak superconductivity of TESs. As a result, the current development path of TES detector for a certain applications is still very time consuming and costly, being in many aspects based on trial and error. Significant advances are expected if better understanding of the fundamental physics of TESs is achieved, because this would underpin accurate and streamlined design processes, leading to shorter periods of experiments with targeted design options. The project aims to develop new a theoretical model of the resistive transition in TESs based on fundamental superconductivity theory. The objectives are: 1. Understanding the mechanisms of the resistive transition in TESs as spatially inhomogeneous superconducting systems, simulating electrical and thermal fluctuations, which determine the energy resolution of TES micro- and nano- calorimeters and noise performance of bolometers 2. Developing a model of non-local energy transport in multilayered TES structures, including energy escape and fluctuations over the extremely short time scale of energy deposition and down-conversion. 3. stimulating the development of the next generation of high-performance TESs by evaluating the potential of graphene and few-layer boron nitride for engineering the coupling to a thermal bath and shaping the resistive transition An expected outcome of this project is a new approach to complex optimization of speed, linearity, energy resolution and array size for individual applications. A few examples illustrate the potential impact. An improvement of the energy resolution of TES-based soft X-ray detectors below 2 eV will allow the Athena X-ray mission proposal to ESA to study turbulence in the hot gas of clusters of galaxies, and will also allow the mapping of chemical shifts in X-ray fluorescence signals in Transmission Electron Microscopy (TEM), thus opening exciting possibilities for Industrial Materials Analysis. An increase in the number of pixels per array would lead to efficient imaging on a future X-ray telescope, and also provides the ability to sustain higher flux levels in emerging synchrotron applications, such as time-resolved X-ray spectroscopy. With several potential markets for high-resolution X-ray spectroscopy equipment, most notably synchrotron facilities and manufacturers of TEM equipment, the emergence of new companies is a likely consequence. For gamma-ray and neutron spectroscopy, larger arrays of TES detectors with higher energy resolution imply more efficient and faster screening, facilitating assessment tasks in such fields as non-destructive assay of spent nuclear fuel, and the operational detection of nuclear materials.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8aaae10dd0e648801b5330e58016cbec&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8aaae10dd0e648801b5330e58016cbec&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2012 - 2014Partners:Skidmore, Owings & Merrill LLP, National Institute of Standards and Tech, Building Research Establishment Ltd BRE, National Institute of Standards and Technology, BuroHappold (United Kingdom) +18 partnersSkidmore, Owings & Merrill LLP,National Institute of Standards and Tech,Building Research Establishment Ltd BRE,National Institute of Standards and Technology,BuroHappold (United Kingdom),FM Global (United States),IIT,VTT Technical Research Centre of Finland,The FM Global Research,Buro Happold Limited,Axa (United Kingdom),AXA UK plc,VTT Technical Research Centre of Finland,VTT ,Scottish Building Standards Division,National Inst. of Standards & Technology,Arup Group Ltd,University of Edinburgh,Arup Group (United Kingdom),Building Research Establishment,Scottish Building Standards Division,Illinois Institute of Technology,Skidmore, Owings & MerrillFunder: UK Research and Innovation Project Code: EP/J001937/1Funder Contribution: 818,919 GBPA Fire Safety Strategy is an essential component of the design for a building. It ensures that in the event of a fire, building occupants can be evacuated safely. The main consideration in these strategies is time. The engineer must show that all occupants can evacuate the building without being exposed to the fire. This is particularly difficult in the case of tall buildings where occupants must travel long distances downward before they can exit the building. A rule of thumb to estimate total building evacuation time is one minute per floor. By this rule the 828m, 162 floor Burj Khalifa in Dubai would take more than 2.5 hours to fully evacuate. The 159m, 31 storey TVCC tower in Beijing was engulfed in a fire which spread up the entire height of the building within 15 minutes of ignition. Clearly, it would not have been possible to evacuate occupants in sufficient time to save them from this fire. It is therefore necessary to have a specific Fire Safety Strategy for these unique buildings.Firstly, the fire must be prevented from spreading vertically, confined to one floor for as long as possible, so occupants on floors far enough from the fire can remain safely in the building until the fire is extinguished or runs out of fuel. Secondly, the building must remain standing, again so that people still in the building and the emergency responders that enter it to fight the fire do not perish as in the World Trade Center disaster. Thirdly, the vertical escape routes must remain structurally intact and smoke free to allow safe passage of occupants from the building. If occupants cannot reach the outside of the building in a timely fashion, then the vertical escape routes must act as the outside and once reached, guarantee safety. To provide these three crucial elements and ensure the safety of occupants of tall buildings, designers must be able to approximate in a quantitative manner the fires expected to occur in these buildings. With optimal use of space being the driving force behind these designs, floors often consist of large, open plan compartments. According to the CTBUH, 82% of the tallest 100 buildings are partially or completely office use (62% completely). Fires in large open plan spaces tend not to cover the entire area of the compartment at any instant but instead propagate across it. These fires have been labelled "travelling fires" and given the statistics, it should be expected that these would be typical fires for tall buildings. Despite this, current methods of prescribing fires are based on data obtained with small homogeneously heated 4mx4m (approx) compartments. These methods, used since the beginning of the 20th Century, are still applied to all structures irrespective of their nature.Current state-of-the-art research shows that a realistic definition of the fire is essential to safely provide all three critical components of the Fire Safety Strategy but also that our current analytical and computational tools cannot provide this. This means we cannot provide an adequate quantitative assessment of the Fire Safety Strategy for tall buildings. Designers are thus not capable of assessing if safety measures introduced result in an under or over dimensioned building. Given the level of optimisation required for tall buildings, this is clearly an important weakness in the design process. As large-scale fire testing cannot be done for all possible building configurations, safe designs can only be achieved using properly validated tools. With no sufficiently detailed test data, fire models cannot be said to have been performance assessed, verified and validated for these scenarios. Real data is needed to establish modelling capabilities and identify problems, thus an integrated modelling/testing programme is essential. This project will conduct a series of tests and modelling studies to establish a methodology that generates real fire inputs for the safe definition of a Fire Safety Strategy for tall buildings.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2fbede60627649920a29e42a6d119250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2fbede60627649920a29e42a6d119250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2020Partners:National Composites Centre, Haydale Limited, SHD Composites, Haydale (United Kingdom), TSU +19 partnersNational Composites Centre,Haydale Limited,SHD Composites,Haydale (United Kingdom),TSU,SHD Composites,National Institute of Standards and Tech,Institute of Textile Chemistry and Chemical Fibers,CPI,Valueform Limited,Centre for Process Innovation CPI (UK),Institute for Textile Chemistry & Chemic,Valueform Limited,University of Bristol,HAYDALE LIMITED,Aberystwyth University,National Composites Centre,University of Bristol,Centre for Process Innovation,Composites Evolution (United Kingdom),National Institute of Standards and Technology,University of Tennessee at Knoxville,National Inst. of Standards & Technology,Composites Evolution (United Kingdom)Funder: UK Research and Innovation Project Code: EP/L017679/1Funder Contribution: 2,060,470 GBPTo reduce society's dependence on petroleum based non-renewable polymers, large scale utilization of naturally occurring, abundantly available polymers such as cellulose needs to be developed. One of the major challenges in large scale utilization of cellulose from biomass is dissolution and processing of cellulose to prepare downstream products such as high performance textile fibres. The Viscose method is the most common way to manufacture cellulose fibres; however, it is a complex, multistep process which involves use of very aggressive chemicals and requires a large volume of fresh water. In the 1970s, petroleum based synthetic polymer fibres such as polyester and nylon were commercialised and were proven to be more economical than producing cellulose fibres via the Viscose method. Hence, the production of cellulose fibres was reduced from over 1.3 million tons per year in 1973 to 0.4 million tons per year by 2008 (Source: International Rayon and Synthetic Fibres Committee). To overcome this issue of processing of cellulose we are proposing to develop an environmentally benign method of manufacturing of high performance cellulose fibres using "Green Solvents". The proposed research will help develop sustainable and high performance cellulose fibres which can in-principle replace heavy glass fibres (which requires high energy during its manufacturing) and non-renewable polymer precursors used for manufacturing of carbon fibres which are widely used in composites for aerospace, auto, sports and wind energy industries in UK and abroad.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::234c17ab0dee77705c2d6a223d0433e4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::234c17ab0dee77705c2d6a223d0433e4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right