Powered by OpenAIRE graph
Found an issue? Give us feedback

Boeing United Kingdom Limited

Country: United Kingdom

Boeing United Kingdom Limited

4 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/P510269/1
    Funder Contribution: 4,411,280 GBP

    Our ambition is to build upon the already successful Quantum Engineering Centre for Doctoral Training (QE-CDT) at the University of Bristol and partner with Cranfield University's Bettany Centre for Entrepreneurship to create a world-leading Hub to train entrepreneurially-minded quantum systems engineers ready for a career in the emerging Quantum Technology (QT) industry. The 'Quantum Enterprise Hub' has 3 key components: Quantum Systems Engineering; Enterprise, Entrepreneurship and Innovation; and Connectivity. The Hub will have unrivalled international excellence in Quantum Engineering, surrounded by world-class expertise in all areas of Systems Engineering and the scientific and technological application areas of QT at the University of Bristol. We will work in partnership with Cranfield University, whose internationally recognised MBA and Ventures Programme will provide the industrially relevant management, entrepreneurship, innovation, and design components of the Hub. Connectivity will be delivered through our network of partners, including the UK National Network of Quantum Technology Hubs, the award winning SETSquared Partnerships and EngineShed, and other academic and industrial partners, working on joint projects and secondments, networking events, Venture Days, investor showcase events, seminars, coaching and mentoring, and other events that will enable students to establish their own broad network of contacts. We have designed the Quantum Enterprise Hub in collaboration with a number of academic and industry experts, and included as partners those who will add substantially to the training experience of our students and fellows. Through this process, a consistent picture of the skills that industry requires for future quantum systems engineers has emerged: innovators who can tackle the hardest intellectual challenges and recognise the end goal of their research, with an ability to EP/N015061/1 Page 2 of 15 Date Saved: 06/07/2015 11:56:16 Date Printed: 06/07/2015 13:11:03 Academic Beneficiaries Describe who will benefit from the research [up to 4000 chars]. Impact Summary Impact Summary (please refer to the help for guidance on what to consider when completing this section) [up to 4000 chars] move from fundamental physics towards the challenges of engineering and developing practical systems, who understand the capabilities of other people (and why they are useful). Industry needs people with good decision-making, communication and management skills, with the ability to work across discipline boundaries (to a deadline and a budget) and build interdisciplinary teams, with the ability to translate a problem from one domain to another. Relevant work experience, knowledge of entrepreneurship, industrial R&D operations, and business practices are essential. We believe that the Quantum Enterprise Hub is something new and exciting with the potential to attract and train the best and brightest students and fellows to ensure that the resulting capacity is world-class and novel, thus providing real and lasting benefits to the UK economy.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G007217/1
    Funder Contribution: 1,565,450 GBP

    Achieving the carbon target for steel and aluminium requires an industry-wide transformation which will result in new business models and new metal flows. The proposal aims to identify credible scenarios for achieving the target, to specify the barriers to achieving them, and to define the economic and policy measures required to drive change. In parallel, the proposal aims to deliver basic technology research that will allow more options for a future materially efficient steel and aluminium economy.It is widely agreed that a cut of at least 60% in global greenhouse gas emissions will be required by 2050 to limit the adverse effects of climate change. Steel and aluminium are responsible for 8% of global energy related emissions. Industry efforts to date have focused on reducing energy in primary production, and recycling metal by melting and re-casting. However, demand for both steel and aluminium is forecast to double, recycling rates are already around 60-70% and the most optimistic projections for energy efficiency improvements deliver only 30% reduction per unit output of material. Efficiency improvements alone are not sufficient, but the 2050 target can be achieved if, in addition to existing measures, energy used in converting ingots to products is halved, the volume of metal used in each application is reduced, and a substantial fraction of metal is re-used without melting. In pursuing this strategy, this proposal is aligned with the EPSRC strategic theme on energy demand reduction.The need for clarity about the physical implications of responding to the carbon target has become a major priority in the metal producing and using industry. Without the work described in this proposal, it is not possible for the government, industry and the public to understand and negotiate the choices they must collectively make in order to meet the carbon target in this sector. Accordingly, this proposal comes with support of 2 million in committed effort from 20 global companies, all with operations in the UK. The business activities of the consortium span primary metal production, conventional recycling, equipment manufacture, road transport, construction, aerospace, packaging and knowledge transfer.The work of the fellowship will be split between business analysis and technology innovation themes. The business analysis theme will identify future scenarios, barriers and a roadmap for meeting the target. This work will include specific analysis of future metal flows, application of a global economic model and the analysis of policy measures. The technology innovation theme aims to optimize the requirements for metal use through novel manufacturing process design, to increase material and energy efficiency in forming and finishing, and to develop solid-state closed-loop recycling for metals. Both themes will be developed in collaboration with the consortium, and will also draw on an international scientific panel and a cross-disciplinary advisory panel in Cambridge.The work will lead to two major reports for wide distribution, direct dissemination into the partner companies, training courses, technology assessments and physical demonstrations of the technology innovations. These will include a demonstration for public engagement. The results of the work on steel and aluminium will be used to stimulate interest among business leaders in other sectors, and will form the basis for a longer term Centre for Low Carbon Materials Processing in Cambridge.The Leadership Fellowship offers a unique and timely opportunity to undertake the basic research required to drive a step-change in material efficiency, by demonstrating that a different flow of metal through the global economy is technically and economically possible, and by inspiring and informing those who can influence change.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L015382/1
    Funder Contribution: 3,992,780 GBP

    The achievements of modern research and their rapid progress from theory to application are increasingly underpinned by computation. Computational approaches are often hailed as a new third pillar of science - in addition to empirical and theoretical work. While its breadth makes computation almost as ubiquitous as mathematics as a key tool in science and engineering, it is a much younger discipline and stands to benefit enormously from building increased capacity and increased efforts towards integration, standardization, and professionalism. The development of new ideas and techniques in computing is extremely rapid, the progress enabled by these breakthroughs is enormous, and their impact on society is substantial: modern technologies ranging from the Airbus 380, MRI scans and smartphone CPUs could not have been developed without computer simulation; progress on major scientific questions from climate change to astronomy are driven by the results from computational models; major investment decisions are underwritten by computational modelling. Furthermore, simulation modelling is emerging as a key tool within domains experiencing a data revolution such as biomedicine and finance. This progress has been enabled through the rapid increase of computational power, and was based in the past on an increased rate at which computing instructions in the processor can be carried out. However, this clock rate cannot be increased much further and in recent computational architectures (such as GPU, Intel Phi) additional computational power is now provided through having (of the order of) hundreds of computational cores in the same unit. This opens up potential for new order of magnitude performance improvements but requires additional specialist training in parallel programming and computational methods to be able to tap into and exploit this opportunity. Computational advances are enabled by new hardware, and innovations in algorithms, numerical methods and simulation techniques, and application of best practice in scientific computational modelling. The most effective progress and highest impact can be obtained by combining, linking and simultaneously exploiting step changes in hardware, software, methods and skills. However, good computational science training is scarce, especially at post-graduate level. The Centre for Doctoral Training in Next Generation Computational Modelling will develop 55+ graduate students to address this skills gap. Trained as future leaders in Computational Modelling, they will form the core of a community of computational modellers crossing disciplinary boundaries, constantly working to transfer the latest computational advances to related fields. By tackling cutting-edge research from fields such as Computational Engineering, Advanced Materials, Autonomous Systems and Health, whilst communicating their advances and working together with a world-leading group of academic and industrial computational modellers, the students will be perfectly equipped to drive advanced computing over the coming decades.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V00784X/1
    Funder Contribution: 14,069,700 GBP

    Public opinion on complex scientific topics can have dramatic effects on industrial sectors (e.g. GM crops, fracking, global warming). In order to realise the industrial and societal benefits of Autonomous Systems, they must be trustworthy by design and default, judged both through objective processes of systematic assurance and certification, and via the more subjective lens of users, industry, and the public. To address this and deliver it across the Trustworthy Autonomous Systems (TAS) programme, the UK Research Hub for TAS (TAS-UK) assembles a team that is world renowned for research in understanding the socially embedded nature of technologies. TASK-UK will establish a collaborative platform for the UK to deliver world-leading best practices for the design, regulation and operation of 'socially beneficial' autonomous systems which are both trustworthy in principle, and trusted in practice by individuals, society and government. TAS-UK will work to bring together those within a broader landscape of TAS research, including the TAS nodes, to deliver the fundamental scientific principles that underpin TAS; it will provide a focal point for market and society-led research into TAS; and provide a visible and open door to engage a broad range of end-users, international collaborators and investors. TAS-UK will do this by delivering three key programmes to deliver the overall TAS programme, including the Research Programme, the Advocacy & Engagement Programme, and the Skills Programme. The core of the Research Programme is to amplify and shape TAS research and innovation in the UK, building on existing programmes and linking with the seven TAS nodes to deliver a coherent programme to ensure coverage of the fundamental research issues. The Advocacy & Engagement Programme will create a set of mechanisms for engagement and co-creation with the public, public sector actors, government, the third sector, and industry to help define best practices, assurance processes, and formulate policy. It will engage in cross-sector industry and partner connection and brokering across nodes. The Skills Programme will create a structured pipeline for future leaders in TAS research and innovation with new training programmes and openly available resources for broader upskilling and reskilling in TAS industry.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.