Powered by OpenAIRE graph
Found an issue? Give us feedback

Queen's University Canada

Queen's University Canada

10 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: NE/T014288/1
    Funder Contribution: 13,241 GBP

    MRC : Lampros Bisdounis : MR/N013468/1

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S027270/1
    Funder Contribution: 499,752 GBP

    This proposal aims to examine the utility of N-heterocyclic carbenes (NHCs) in a number of technologically important areas including corrosion inhibition, etching of metal surfaces and enantioselective heterogeneous catalysis. This is a collaborative project between a catalytic surface scientist (Prof. Chris Baddeley, St Andrews) and experts in organometallic chemistry and materials science (Prof. Cathy Crudden, Queen's University, Ontario) and surface and materials chemistry (Prof. Hugh Horton, Queen's University, Ontario). NHCs are an exciting class of molecules that have been successfully and extensively employed in homogeneous catalysis since the 1990s. There has recently been a rapid increase in interest in the use of NHCs for the stabilisation of transition metal nanoparticles and extended metal surfaces. A very attractive feature of NHCs is their highly flexible synthesis. This makes it relatively straightforward to introduce functionality into the molecular structure of NHCs in order to tailor their properties. A key advance in this area was the development by Crudden's group of synthetic methods to produce bench stable NHCs in the carbonate form. Our work showed that NHCs of this type could be vapour deposited in ultrahigh vacuum onto metal surfaces (Baddeley) as well as being deposited from solution (Horton). Since the 1980s the creation of self-assembled monolayers (SAMs) on metal surfaces has led to many important applications. Commonly, SAMs consist of thiolate modified Au surfaces. Crudden and Horton showed that NHCs on Au outperform their thiolate analogues in terms of chemical and thermal stability. Baddeley was able to measure the strength of the Au-carbene bond and show that it is significantly stronger than the Au-S bond in thiolate SAMs. This project aims to exploit the chemical and thermal stability of NHC modified metals in a number of ways. Baddeley will use the complementary techniques of scanning tunnelling microscopy, high resolution electron energy loss spectroscopy and temperature programmed desorption to quantify the adsorption energy of NHCs on metal surfaces, to characterise the orientation, packing and thermal stability of adsorbed NHC molecules. The ability of NHCs to etch oxide surfaces and to passivate metal surfaces will be investigated with the objective of applying NHCs in the field of corrosion inhibition. The adsorption of chiral NHCs onto metal surfaces will be investigated with the aim of developing enantioselective heterogeneous catalysts - i.e. catalysts capable of producing one mirror image form of an organic molecule and not the other. Enantioselective catalysis is extremely important in the pharmaceutical and agrochemicals industries, but, to date, heterogeneous catalysts have made little impact on an industrial scale.

    more_vert
  • Funder: UK Research and Innovation Project Code: AH/P006175/1
    Funder Contribution: 47,675 GBP

    As of March 2016, a total of 104,773 uniformed personnel from 123 countries were serving in 16 peacekeeping operations around the world. Where foreign soldiers - during war, occupation or peacekeeping operations - are on foreign soil, military-civilian relations develop, including those between soldiers and local women. Peacekeepers have increasingly been associated with sexual exploitation and abuse of the vulnerable populations they had been mandated to protect. Many of the intimate relations between peacekeeping personnel and local women, of both voluntary and exploitative nature, have led to pregnancies and to children being born. These so-called 'peace babies' and their mothers face particular challenges in volatile post-conflict communities, reportedly including childhood adversities as well as stigmatization, discrimination and disproportionate economic and social hardships. The network connects two strands of inquiry around 'peace babies' - from the academic world and from within the development sector - in a spirit of conversation and collaboration, to examine challenges of humanitarian intervention in a transnational historical context. Building on the firm belief that history's focus on causality and long-term processes of change is indispensable for appreciating the complex dynamics of socio-cultural change, the network contributes a deeper understanding of development and aims to affect practice. It provides an historical complement to the wealth of available analyses - internal and external - of the contemporary humanitarian environment. Specifically, the network proposes an in-depth-study of the situation of 'peace babies' by exploring the children conceived by personnel from or associated with the United Nations Stabilization Mission in Haiti (MINUSTAH). MINUSTAH is among the missions that have been associated with allegations of a range of abuses, not least related to sexual and gender-based violence and consequently the unintended legacy of children fathered by UN personnel. The UN has recently acknowledged that 'peacekeeper babies' exist. Yet, an evidence base relating to the welfare of children fathered by UN peacekeepers (globally or in Haiti) is virtually non-existent, and it is clear that the existing UN policies and support programs are inadequate. This multidisciplinary collaboration between scholars from Queen's University, the University of Birmingham, the Centre of International and Defence Policy, and Haitian-based Enstiti Travay Sosyal ak Syans Sosyal (ETS), along with civil society organisations, the Institute for Justice and Democracy in Haiti and Haitian-based Bureau des Avocats Internationaux, will address this knowledge gap and enhance our historically-informed understanding of the challenges faced by peace babies and their families as well as the obstacles to accessing support. Beyond the core UK-Canada-Haiti partnership, the network will include a further four ODA-recipient countries (Cambodia, Bosnia, Liberia and the DRC) and will apply insights from Haiti to PSOs more generally in discourse with academic and non-academic participants from those countries with extensive PSO experience. The network is structured around three network meetings (two workshops and a network conference, the latter supplemented by an early-career research workshop) which will create a sustainable partnership that focuses on co-creation of knowledge as well as a collaborative mobilisation of this knowledge to inform academic and non-academic stakeholders interested in peacekeepers' children. The findings of the workshops and the final conference will inform both academic outputs and - going forward - the development of an intersectoral research agenda; furthermore they will frame a special journal edition on 'Peace Babies' and will be at the core of the network's activities beyond the funding period, both as a platform for continued transnational and intersectoral conversation and of collaborative research

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K030558/1
    Funder Contribution: 724,429 GBP

    Our research involves the theoretical and experimental investigation of quantum many-body dynamics in systems of ultra-cold atoms, with the view of developing next-generation rotational sensors, and developing tools for and improving our general understanding of interacting many-body systems far from equilibrium. The central idea is based on using ultra-cold atoms with bosonic spin statistics, in contrast to e.g., electrons orbiting an atomic nucleus, where two electrons with the same spin cannot occupy exactly the same energy level or orbital (fermionic spin statistics). This means that at sufficiently low temperatures a dilute atomic gas composed of such bosonic atoms undergoes a particular kind of phase transition. A phase transition is a sudden, qualitative change of state, like and ordinary gas condensing to a liquid state as the temperature is lowered. The state of matter reached in the case of very dilute, low temperature bosonic atoms is called a Bose-Einstein condensate. This can be seen as the atomic/matter equivalent of a laser; a coherent, intense source of atoms, with consequent advantages to measurement science or metrology (which in the case of light are limited by the minimum wavelength for the light to be visible and controlled by conventional optics). Atom-atom interactions are, unfortunately, typically problematical, and tend to counteract the advantages of a coherent atomic source. We will build upon a proposal (suggested one of the investigators) where the issues associated with atom-atom interactions appear to be largely avoided due to an astutely chosen experimental geometry. In the process of investigating this proposed system as well as a number of closely related issues, we will deepen our understanding of nonequilibrium dynamics (due, for example, to the crucial importance of avoiding such things as flow instabilities in any functioning rotational senser), and develop broadly applicable theoretical tools accounting for the influence and production of complicated many-body effects. As such our research falls within the EPSRC Physics Grand Challenges "Emergence and Physics Far From Equilibrium" (motivated by the fact that "dramatic collective behaviour can emerge unexpectedly in large complicated systems" and "This fundamental work will be driven by the ever-present possibility that emergent states may provide the foundations for the technologies of the future") and "Quantum Physics for New Quantum Technologies" (motivated by "Next generation quantum technologies will rely on our understanding and exploitation of coherence and entanglement" and "Success requires a deeper understanding of quantum physics and a broad ranging development of the enabling tools and technologies"). Ultracold atoms are an ideal configuration in which to investigate dynamics far from equilibrium, due to a very high degree of flexibility in their experimental configurations (varying the experimental geometry, strength of interaction, and even whether the interactions are attractive or repulsive, by appropriate combinations of magnetic, laser and microwave fields), and atomic, molecular and optical (AMO) physics systems have a superlative record in terms of precision measurement, most notably in the form of atomic clocks, which, for example, underpin the functioning of the global positioning system (GPS).

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/G000360/1
    Funder Contribution: 53,759 GBP

    Understanding the exchange of energy and gases between the earth's surface and the lower atmosphere is essential for answering many questions related to, e.g., the global carbon budget, ecosystem functioning, air pollution mitigation, greenhouse gas emissions, weather forecasting, and projections of climate change. However, uncertainties in carbon dioxide (CO2) and water vapour (H2O) budgets limit our ability to reproduce and project these exchange processes. Exchange processes are usually analysed based on micrometeorological measurements from tall flux towers, thought to be representative of large area averages. A limitation of this approach is that the actual source areas of these fluxes are not always known and that the impact of land-surface heterogeneity (at small or large scale) on the fluxes is not yet completely understood. The micrometeorological measurements of the major carbon flux networks around the world, such as Ameriflux, Canadian Carbon Program, CarboEurope (in which the UK plays a prominent role) and Oz-Net, are essential to validate global estimates of CO2 sources and sinks, to develop and validate land surface models and to understand the sensitivity of CO2 fluxes under changing climate conditions. Unfortunately, flux tower measurements currently suffer from substantial uncertainty, which is primarily due to the indeterminate relationship of fluxes and their source areas; at present our current understanding can explain 60-80% of the variance of the fluxes. The overall goal of this project is to incorporate information on topography and structure of vegetation (tree height, canopy depth, and foliage density) in footprint estimates and thereby substantially reducing the potential errors in the calculation of the CO2 and H2O budgets. The selected forested sites consist of the very few long-term flux stations within the boreal forest biomes and represent the three dominant species of the boreal forest (jack pine, black spruce, aspen). The combination of these three forest stands will provide data that is sufficiently representative to allow for upscaling to the boreal forest biome scale. The boreal forest constitutes the world's second largest forested biome (after the tropical forest) and plays an important role in regulating the climate of the northern hemisphere and in the global carbon cycle. The footprint model developed by the PI and widely used by the international community will be applied on long-term data sets to estimate the size and location of the area containing the sources or sinks (footprint) of CO2 and H2O fluxes measured at the three sites. The footprints will account for, and depend on, atmospheric conditions, such as wind speed and boundary layer stability, and surface characteristics, e.g. roughness. This footprint model is one of very few models that are valid over a huge range of stratifications and receptor heights. The major improvement of the footprint model will incorporate three-dimensional information on the structure of the forest, derived from airborne scanning LiDAR measurements, leading to exceptionally detailed high temporal resolution source information. Unlike data from passive sensors, the unique LiDAR data set provides information from within the tree canopy. The results will be used to analyse impacts of structure of vegetation and small changes in elevation on the net CO2 and H2O fluxes. The new understanding will assist future studies of upscaling from flux towers to the spatially heterogeneous boreal forest landscape and will reduce the uncertainty in the modelling of carbon budgets at local, regional and continental scale. It will lead to a greater understanding of local structural effects on carbon sources and sinks and thus the dynamics of carbon cycling and to major improvements of the description of these exchange processes in land surface models. Hence, the new insights will help reducing uncertainty in projections of climate change.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.