Powered by OpenAIRE graph
Found an issue? Give us feedback

APC Ltd

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/V050796/1
    Funder Contribution: 1,180,390 GBP

    The pharmaceutical industry is undergoing a period of unprecedented change in terms of product development, with increased digitization, greater emphasis on continuous manufacture and the rapid advent of novel therapeutic paradigms, such as personalized medicines, becoming more and more business critical. This change is amplified by Quality by Design considerations and the now routine use of the Target Product Profile approach to the design of patient-centred dosage forms. The recent advances in the range of available therapeutic strategies, alongside the breadth of diseases that can now be successfully treated, has resulted in the need for both new dosage forms and manufacturing approaches. Crucially, there has been a shift from high volume, low cost manufacture towards a more specialized, higher value product development. Consequently, ever more sophisticated approaches, not merely to producing medicinal products, but also to controlling their quality at every stage of the manufacturing process, have become paramount. These would be greatly facilitated by the emerging technologies, based on artificial intelligence and machine learning techniques, for enhancing online process analysis as well as real-time responsive process control. These technologies are particularly important for products where the financial and practical margins for manufacturing error are low, as is the case for an increasing proportion of new therapies. In this proposal, we focus on a new way of screening, manufacturing and quality controlling drugs in the form of nanocrystals, that is, drugs prepared as nanosized crystalline particles stabilized by surface-active agents. In particular, we will combine continuous-flow processing, online advanced process analytical technology, real-time process control and quality assurance, design of experiments, advanced data analysis and artificial intelligence to deliver fully automated, self-optimizing platforms for screening and manufacturing drugs as nanocrystals via antisolvent precipitation. These dosage forms have attracted substantial interest as a means of delivering poorly water-soluble (and thus poorly bioavailable) drugs, a persistent and increasing problem for the pharmaceutical industry. While nanocrystals offer a suitable test system for our approach, our methodology and the manufacturing platform we intend to deliver can be applied to other drug delivery systems. We focus on nanocrystals because they are of considerable therapeutic and commercial significance both nationally and internationally. We intend to use continuous-flow small-scale (i.e. millifluidic) systems. These offer excellent process controllability, can generate crystals of nearly uniform size, and as the process is continuous, the product characteristics are more stable than in batch systems. Millifluidic systems are flexible (one platform can produce a larger variety of products) and agile - reacting rapidly to changes in market demands; they reduce the manufacturing time, speed up the supply chain and, being smaller, can be portable. These systems also expedite screening, curtailing the quantities of material required, benefits that design of experiments will amplify. This data-driven technique allows identifying the most informative experiments, maximizing learning while minimizing time and costs, advantages not fully exploited by the pharmaceutical industry. These technologies, coupled with online advanced process analytical methods, real-time process control, cutting-edge data analysis and machine learning methods, have the potential to disrupt the status quo, accelerate process development and deliver transformative platforms for the cost-effective and sustainable manufacturing of active pharmaceutical ingredients in solid dosage form, reducing the timeline from drug discovery to patient, and contributing to placing the UK at the forefront of innovation in the pharmaceutical sector.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S023232/1
    Funder Contribution: 6,433,910 GBP

    Chemistry is a key underpinning science for solving many global problems. The ability to make any molecule or material, in any quantity needed in a prescribed timescale, and in a sustainable way, is important for the discovery and supply of new medicines to cure diseases, agrochemicals for better crop yields/protection, as well as new electronic and smart materials to improve our daily lives. Traditionally, synthetic chemistry is performed manually in conventional glassware. This approach is becoming increasingly inadequate to keep pace with the demand for greater accuracy and reproducibility of reactions, needed to support further discovery and development, including scaling up processes for manufacturing. The future of synthetic chemistry will require the wider adoption of automated (or autonomous) reaction platforms to perform reactions, with full capture of reaction conditions and outcomes. The data generated will be valuable for the development of better reactions and better predictive tools that will facilitate faster translation to industrial applications. The chemical and pharmaceutical industry is a significant provider of jobs and creator of wealth for the UK. Data from the Chemical Industries Association (CIA) shows that the chemical industry has a total turnover of £40B, adding £14.4B of value to the UK economy every year, employs 140,000 people directly, and supports a further 0.5M jobs. The sector is highly innovation-intensive: much of its annual spend of £4B on investment in capital and R&D is based on synthetic chemistry with many SME's and CRO's establishing novel markets in Science Parks across the UK regions, particularly in the South East and North West. The demand for graduate recruits by the Chemicals and Pharmaceutical industries for the period 2015-2025 is projected to be between 50,000-77,000, driven by an aging workforce creating significant volumes of replacement jobs, augmented by the need to address skills shortages in key enabling technologies, particularly automation and data skills. This CDT will provide a new generation of molecular scientists that are conversant with the practical skills, associated data science and digital technology to acquire, analyse and utilise large data sets in their daily work. This will be achieved by incorporating cross-disciplinary skills from engineering, as well as computing, statistics, and informatics into chemistry graduate programs, which are largely lacking from existing doctoral training in synthetic chemistry. Capitalising upon significant strategic infrastructural and capital investment on cutting edge technology at Imperial College London made in recent years, this CDT also attracts very significant inputs from industrial partners, as well as Centres of Excellence in the US and Europe, to deliver a unique multi-faceted training programme to improve the skills, employability and productivity of the graduates for future academic and industrial roles.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.