
NTNU (Norwegian Uni of Sci & Technology)
NTNU (Norwegian Uni of Sci & Technology)
12 Projects, page 1 of 3
assignment_turned_in Project2009 - 2018Partners:NTNU (Norwegian Uni of Sci & Technology), AECOM, Waseda University, EDF, Kansas State University +64 partnersNTNU (Norwegian Uni of Sci & Technology),AECOM,Waseda University,EDF,Kansas State University,Dept for Env Food & Rural Affairs DEFRA,Ove Arup Ltd,Buro Happold Limited,Arup Group Ltd,Zero Carbon Hub,Norwegian University of Science and Technology,Royal Inst of British Architects RIBA,Pell-Frischmann Consultants,Waseda University,Johnson Controls Ltd,Massachusetts Institute of Technology,Faber Maunsell,OSU-OKC,PNW,University of California, Berkeley,Johnson Controls (United Kingdom),MIT,University of California, San Diego,University of California Berkeley,Zero Carbon Hub,Faber Maunsell,Communities and Local Government,CIBSE,University of California, San Diego,BURO HAPPOLD LIMITED,DTU,Lighting Education Trust,Dept for Env Food & Rural Affairs DEFRA,Lighting Education Trust,Hoare Lea Ltd,UCL,Hoare Lea,Technical University of Denmark,Norwegian University of Science and Technology Science and Technology,Dalhousie University,Purdue University,Communities and Local Government,Johnson Controls (United States),The National Energy Foundation,Johnson & Johnson (United States),Électricité de France (France),Technical University of Denmark,Georgia Inst of Tech,Hoare Lea Ltd,Department for Environment Food and Rural Affairs,University of California, San Diego,EDF,Purdue University System,Oklahoma State University System,J&J,Royal Institute of British Architects,NEF,LBNL,Helsinki University of Technology,Barratt Developments,CIBSE,GT,Lawrence Berkeley National Laboratory,Universität Karlsruhe,Buro Happold,Barratt Developments PLC,Massachusetts Institute of Technology,Kansas State University,Pell-Frischmann ConsultantsFunder: UK Research and Innovation Project Code: EP/H009612/1Funder Contribution: 5,814,410 GBPReducing carbon emissions and securing energy supplies are crucial international goals to which energy demand reduction must make a major contribution. On a national level, demand reduction, deployment of new and renewable energy technologies, and decarbonisation of the energy supply are essential if the UK is to meet its legally binding carbon reduction targets. As a result, this area is an important theme within the EPSRC's strategic plan, but one that suffers from historical underinvestment and a serious shortage of appropriately skilled researchers. Major energy demand reductions are required within the working lifetime of Doctoral Training Centre (DTC) graduates, i.e. by 2050. Students will thus have to be capable of identifying and undertaking research that will have an impact within their 35 year post-doctoral career. The challenges will be exacerbated as our population ages, as climate change advances and as fuel prices rise: successful demand reduction requires both detailed technical knowledge and multi-disciplinary skills. The DTC will therefore span the interfaces between traditional disciplines to develop a training programme that teaches the context and process-bound problems of technology deployment, along with the communication and leadership skills needed to initiate real change within the tight time scale required. It will be jointly operated by University College London (UCL) and Loughborough University (LU); two world-class centres of energy research. Through the cross-faculty Energy Institute at UCL and Sustainability Research School at LU, over 80 academics have been identified who are able and willing to supervise DTC students. These experts span the full range of necessary disciplines from science and engineering to ergonomics and design, psychology and sociology through to economics and politics. The reputation of the universities will enable them to attract the very best students to this research area.The DTC will begin with a 1 year joint MRes programme followed by a 3 year PhD programme including a placement abroad and the opportunity for each DTC student to employ an undergraduate intern to assist them. Students will be trained in communication methods and alternative forms of public engagement. They will thus understand the energy challenges faced by the UK, appreciate the international energy landscape, develop people-management and communication skills, and so acquire the competence to make a tangible impact. An annual colloquium will be the focal point of the DTC year acting as a show-case and major mechanism for connection to the wider stakeholder community.The DTC will be led by internationally eminent academics (Prof Robert Lowe, Director, and Prof Kevin J Lomas, Deputy Director), together they have over 50 years of experience in this sector. They will be supported by a management structure headed by an Advisory Board chaired by Pascal Terrien, Director of the European Centre and Laboratories for Energy Efficiency Research and responsible for the Demand Reduction programme of the UK Energy Technology Institute. This will help secure the international, industrial and UK research linkages of the DTC.Students will receive a stipend that is competitive with other DTCs in the energy arena and, for work in certain areas, further enhancement from industrial sponsors. They will have a personal annual research allowance, an excellent research environment and access to resources. Both Universities are committed to energy research at the highest level, and each has invested over 3.2M in academic appointments, infrastructure development and other support, specifically to the energy demand reduction area. Each university will match the EPSRC funded studentships one-for-one, with funding from other sources. This DTC will therefore train at least 100 students over its 8 year life.
more_vert assignment_turned_in Project2021 - 2025Partners:Department for International Trade, EA, Colorado School of Mines, Mandalay Resources, Oakdene Hollins (United Kingdom) +77 partnersDepartment for International Trade,EA,Colorado School of Mines,Mandalay Resources,Oakdene Hollins (United Kingdom),Cornwall Resources Limited,Critical Minerals Association,Apto Solutions,Cornwall Resources Limited,Levin Sources,Natural History Museum,The Coal Authority,HSSMI Ltd,UNIVERSITY OF EXETER,Cornwall Council,Marine Minerals Ltd,EYDE Cluster,Cornish Mining World Heritage,Advanced Propulsion Centre UK Ltd (APC),Less Common Metals Ltd,Pact,Life Saver Power,PV3 Technologies Ltd,Ravel,CB2tech Limited,Roskill Information Services Ltd,Geothermal Engineering Ltd,The Natural History Museum,Beta Technology Limited,Satarla,LCM,Geothermal Engineering Ltd,Norwegian University of Science and Technology Science and Technology,HyProMag,DEFRA,Critical Materials Institute,HyProMag,Apto Solutions,Cobalt Institute,Cornish Lithium Ltd,EYDE Cluster,CB2tech Limited,Ravel,Celsa Steel UK,Bullitt,ENVIRONMENT AGENCY,HSSMI Ltd,Mkango Resources Limited,Satarla,Cornwall Council,Bullitt,CSM,Advanced Propulsion Centre UK Ltd (APC),Norwegian University of Science and Technology,University of Exeter,Mkango Resources Limited,Circunomics,Kite Air Ltd,PV3 Technologies Ltd,Minviro,The Coal Authority,University of Exeter,Roskill Information Services Ltd,Circunomics,Cobalt Institute,NTNU (Norwegian Uni of Sci & Technology),Marine Minerals Ltd,Life Saver Power,Levin Sources,Critical Minerals Association,Kite Air Ltd,Celsa Steel UK,Beta Technology Ltd,Cornish Mining World Heritage,Environment Agency,Pact,Cornish Lithium Ltd,Oakdene Hollins Ltd,Cobalt Development Institute,Minviro,Critical Materials Institute,UK Trade and InvestmentFunder: UK Research and Innovation Project Code: EP/V011855/1Funder Contribution: 4,436,180 GBPThe Circular Economy (CE) is a revolutionary alternative to a traditional linear, make-use-dispose economy. It is based on the central principle of maintaining continuous flows of resources at their highest value for the longest period and then recovering, cascading and regenerating products and materials at the end of each life cycle. Metals are ideal flows for a circular economy. With careful stewardship and good technology, metals mined from the Earth can be reused indefinitely. Technology metals (techmetals) are an essential, distinct, subset of specialist metals. Although they are used in much smaller quantities than industrial metals such as iron and aluminium, each techmetal has its own specific and special properties that give it essential functions in devices ranging from smart phones, batteries, wind turbines and solar cells to electric vehicles. Techmetals are thus essential enablers of a future circular, low carbon economy and demand for many is increasing rapidly. E.g., to meet the UK's 2050 ambition for offshore wind turbines will require 10 years' worth of global neodymium production. To replace all UK-based vehicles with electric vehicles would require 200% of cobalt and 75% of lithium currently produced globally each year. The UK is 100% reliant on imports of techmetals including from countries that represent geopolitical risks. Some techmetals are therefore called Critical Raw Materials (high economic importance and high risk of supply disruption). Only four of the 27 raw materials considered critical by the EU have an end-of-life recycling input rate higher than 10%. Our UKRI TechMet CE Centre brings together for the first time world-leading researchers to maximise opportunities around the provision of techmetals from primary and secondary sources, and lead materials stewardship, creating a National Techmetals Circular Economy Roadmap to accelerate us towards a circular economy. This will help the UK meet its Industrial Strategy Clean Growth agenda and its ambitious UK 2050 climate change targets with secure and environmentally-acceptable supplies of techmetals. There are many challenges to a future techmetal circular economy. With growing demand, new mining is needed and we must keep the environmental footprint of this primary production as low as possible. Materials stewardship of techmetals is difficult because their fate is often difficult to track. Most arrive in the UK 'hidden' in complex products from which they are difficult to recover. Collection is inefficient, consumers may not feel incentivised to recycle, and policy and legislative initiatives such as Extended Producer Responsibility focus on large volume metals rather than small quantity techmetals. There is a lack of end-to-end visibility and connection between different parts of techmetal value chains. The TechMet consortium brings together the Universities of Exeter, Birmingham, Leicester, Manchester and the British Geological Survey who are already working on how to improve the raw materials cycle, manufacture goods to be re-used and recycled, recycle complex goods such as batteries and use and re-use equipment for as long as possible before it needs recycling. One of our first tasks is to track the current flows of techmetals through the UK economy, which although fundamental, is poorly known. The Centre will conduct new interdisciplinary research on interventions to improve each stage in the cycle and join up the value chain - raw materials can be newly mined and recycled, and manufacturing technology can be linked directly to re-use and recycling. The environmental footprint of our techmetals will be evaluated. Business, regulatory and social experts will recommend how the UK can best put all these stages together to make a new techmetals circular economy and produce a strategy for its implementation.
more_vert assignment_turned_in Project2019 - 2024Partners:Norwegian University of Science and Technology Science and Technology, Norwegian University of Science and Technology, NTNU (Norwegian Uni of Sci & Technology), University of Leeds, University of Leeds +5 partnersNorwegian University of Science and Technology Science and Technology,Norwegian University of Science and Technology,NTNU (Norwegian Uni of Sci & Technology),University of Leeds,University of Leeds,California Institute of Technology,California Institute of Technology,CIT,Max-Planck-Gymnasium,Max Planck InstitutesFunder: UK Research and Innovation Project Code: EP/S030476/1Funder Contribution: 1,538,130 GBPThe 9th March 2016 was the 50th anniversary of the landmark "Jost Report - Lubrication (Tribology) Education and Research" . The word Tribology was born and the dramatic financial savings that could be gained by optimum practice in this area were formally documented for the first time. 50 years on, the impact of tribology (friction and wear) on the economies of developed nations remains the same; 5-8% of GDP; but tribology as an engineering science has evolved. Tribology challenges in 2016 and beyond are driven by new challenges; the challenges in 1966 were solved and new challenges go with the emergence of new industrial areas. The basic science of tribology remains the same but there is a need to embrace multi-scale thinking, complex materials and interfaces and systems to operate in new and demanding environments. In this proposal Tribology as an enabling technology will be integrated into two industrial areas that are underpinning for the UK and internationally; advanced manufacturing and robotics and autonomous systems. The proposal is transformative as it brings tribology, as a positive and enabling discipline, into two emerging areas of nanomanufacturing and robotics. Tribology is normally associated with the wear and degradation and whilst important to the economy normally has negative connotations. This proposal embraces the positive aspects of triblogical science.
more_vert assignment_turned_in Project2019 - 2028Partners:Royal Bank of Scotland Plc, NHS Health Scotland, WEST Beer, NHS NATIONAL SERVICES SCOTLAND, Ofgem +82 partnersRoyal Bank of Scotland Plc,NHS Health Scotland,WEST Beer,NHS NATIONAL SERVICES SCOTLAND,Ofgem,nVIDIA,Dassault Systemes Biovia Ltd,Dassauly Systemes BIOVIA,NTNU (Norwegian Uni of Sci & Technology),NHS National Services Scotland,NatureScot,McLaren Applied Technologies,IBM Research,Royal Bank of Scotland Plc,University of Edinburgh,Duke University,Brown University,Cresset BioMolecular Discovery Ltd,National School of Bridges ParisTech,Intel UK,NM Group,WEST Beer,National Wildlife Research Institute,NPL,The Data Lab,James Hutton Institute,BioSS (Biomaths and Stats Scotland),TU Wien,Forestry Commission UK,Technical University of Denmark,AkzoNobel UK,DTU,CRESSET BIOMOLECULAR DISCOVERY LIMITED,uFraction8 Limited,Intel Corporation (UK) Ltd,Ofgem,Berlin University of Technology,The Data Lab,NERC British Geological Survey,AkzoNobel,James Hutton Institute,National Physical Laboratory NPL,uFraction8 Limited,Moody's Analytics UK Ltd,Brainnwave Ltd,Brown University,SNH,Utrecht University,British Geological Survey,Infineum UK Ltd,Oliver Wyman,Oliver Wyman,Aberdeen Standard Investments,PROCTER & GAMBLE TECHNICAL CENTRES LIMITED,National School of Bridges ParisTech,Norwegian University of Science and Technology Science and Technology,AkzoNobel UK,Norwegian University of Science and Technology,Ocean Science Consulting,OpenGoSim,Forestry Commission England,UNITO,Technical University of Denmark,Procter & Gamble Limited (P&G UK),THE JAMES HUTTON INSTITUTE,Johnson Matthey Plc,TUW,Leonardo MW Ltd,National Wildlife Research Institute,IBM Research,Aberdeen Standard Investments,BioSS (Biomaths and Stats Scotland),nVIDIA,Vienne University of Technology,Johnson Matthey plc,DEFRA,Johnson Matthey,TU Darmstadt,Moody's Analytics UK Ltd,Ocean Science Consulting,UP,Duke University,Infineum UK,OpenGoSim,NM Group,Brainnwave Ltd,McLaren Applied TechnologiesFunder: UK Research and Innovation Project Code: EP/S023291/1Funder Contribution: 6,384,740 GBPThe Centre for Doctoral Training MAC-MIGS will provide advanced training in the formulation, analysis, and implementation of state-of-the-art mathematical and computational models. The vision for the training offered is that effective modern modelling must integrate data with laws framed in explicit, rigorous mathematical terms. The CDT will offer 76 PhD students an intensive 4-year training and research programme that equips them with the skills needed to tackle the challenges of data-intensive modelling. The new generation of successful modelling experts will be able to develop and analyse mathematical models, translate them into efficient computer codes that make best use of available data, interpret the results, and communicate throughout the process with users in industry, commerce and government. Mathematical and computational models are at the heart of 21st-century technology: they underpin science, medicine and, increasingly, social sciences, and impact many sectors of the economy including high-value manufacturing, healthcare, energy, physical infrastructure and national planning. When combined with the enormous computing power and volume of data now available, these models provide unmatched predictive tools which capture systematically the experimental and observational evidence available. Because they are based on sound deductive principles, they are also the only effective tool in many problems where data is either sparse or, as is often the case, acquired in conditions that differ from the relevant real-world scenarios. Developing and exploiting these models requires a broad range of skills - from abstract mathematics to computing and data science - combined with expertise in application areas. MAC-MIGS will equip its students with these skills through a broad programme that cuts across disciplinary boundaries to include mathematical analysis - pure, applied, numerical and stochastic - data-science and statistics techniques and the domain-specific advanced knowledge necessary for cutting-edge applications. MAC-MIGS students will join the broader Maxwell Institute Graduate School in its brand-new base located in central Edinburgh. They will benefit from (i) dedicated academic training in subjects that include mathematical analysis, computational mathematics, multi-scale modelling, model reduction, Bayesian inference, uncertainty quantification, inverse problems and data assimilation, and machine learning; (ii) extensive experience of collaborative and interdisciplinary work through projects, modelling camps, industrial sandpits and internships; (iii) outstanding early-career training, with a strong focus on entrepreneurship; and (iv) a dynamic and forward-looking community of mathematicians and scientists, sharing strong values of collaboration, respect, and social and scientific responsibility. The students will integrate a vibrant research environment, closely interacting with some 80 MAC-MIGS academics comprised of mathematicians from the universities of Edinburgh and Heriot-Watt as well as computer scientists, engineers, physicists and chemists providing their own disciplinary expertise. Students will benefit from MAC-MIGS's diverse network of more than 30 industrial and agency partners spanning a broad spectrum of application areas: energy, engineering design, finance, computer technology, healthcare and the environment. These partners will provide internships, development programmes and research projects, and help maximise the impact of our students' work. Our network of academic partners representing ten leading institutions in the US and Europe, will further provide opportunities for collaborations and research visits.
more_vert assignment_turned_in Project2020 - 2024Partners:NTNU (Norwegian Uni of Sci & Technology), [no title available], UNIVERSITY OF CAMBRIDGE, Cambridge Integrated Knowledge Centre, Defence Science & Tech Lab DSTL +5 partnersNTNU (Norwegian Uni of Sci & Technology),[no title available],UNIVERSITY OF CAMBRIDGE,Cambridge Integrated Knowledge Centre,Defence Science & Tech Lab DSTL,Norwegian University of Science and Technology,USYD,University of Southampton,DSTL,University of SouthamptonFunder: UK Research and Innovation Project Code: MR/S015566/1Funder Contribution: 762,530 GBPThis project aims at resolving airflow in and around buildings to better understand urban air pollution. According to the World Health Organization (WHO), 80% of people living in urban areas are exposed to unsafe levels of air pollution and with it an increased risk of heart disease, lung cancer, and respiratory disease. This research will study how pollution disperses in urban areas, in order to improve the pollution dispersion models used to make air quality forecasts and that inform urban planning and policy. Experiments will be conducted on scale models in a controlled laboratory flow facility. The measured flow patterns can then be related to full-scale atmospheric flows, in the same way wind tunnel tests of scale models provide insights to vehicle aerodynamics. The majority of experiments will take place in a water flume facility and passive tracers will be released at key points around the model, as a surrogate for air pollution. The use of the water flume permits the use of advanced laser-based measurement tools that can capture full two-dimensional quantitative images of the dispersion process both at the fine scales near the pollution sources and at the city scale. This is the key feature that differentiates this work from previous wind tunnel and in-situ measurements of dispersion, which are typically limited to point measurements. The fellows is uniquely positioned to conduct these novel spatial measurements due to her expertise with the experimental techniques and her previous background analysing coherent structures and mixing in canonical turbulent shear flows. The University of Southampton is particularly suitable location for this research because of the combination of having a suitable water flume facility as well as the required high-resolution camera and laser systems. This study is particularly timely as governments focus on improving environmental sustainability and air quality in cities. These results will improve our ability to inform local council and industry on how pollution disperses around the city, aiding them in making decisions impacting financial and environmental sustainability and public health and safety. In addition to these societal impacts, these results will have academic impact by improving meteorological models. Existing dispersion models focus on time-averaged predictions; however, these models struggle to predict spatio-temporal fluctuations and peak exposures, especially near the source. Understanding these dynamics is important for air quality, as even short term exposure to toxic gases and airborne particulate matter can have adverse health impacts. These results will improve our understanding of the underlying physics in order to guide theories and improve models for predicting the dynamics of pollution dispersion in complex urban regions.
more_vert
chevron_left - 1
- 2
- 3
chevron_right