
California Academy of Sciences
California Academy of Sciences
3 Projects, page 1 of 1
- assignment_turned_in Project2020 - 2022Partners:ULB, OBU, Sorbonne University, Sorbonne University, California Academy of Sciences +5 partnersULB,OBU,Sorbonne University,Sorbonne University,California Academy of Sciences,Oxford Brookes University,California Academy of Sciences,Field Studies Council,FSC,Free University of Brussels (ULB)Funder: UK Research and Innovation Project Code: NE/T006854/1Funder Contribution: 464,459 GBP- The duplication of genes provides new genetic material that can be used for novel functions, allowing plants and animals to evolve biological innovations and adapt to environmental conditions. Whole genome duplication (WGD) is arguably the most dramatic mechanism for duplication, resulting in the production of a new copy of every gene in the nuclear genome. Around 430 million years ago, spiders and scorpions diverged from a common ancestor that had experienced a WGD. The retained duplicated genes from this WGD event (genes called ohnologs) can still be found in the genomes of the approximately 45,000 species of these animals alive today and may have contributed to their adaptation and diversification. Since then, some families of Synspermiata spiders have undergone at least two additional WGDs within a single lineage, reflecting a similar series of WGDs in vertebrates. This presents an opportunity to compare these events to determine whether there are general principals shaping the outcomes of WGDs and their contribution to animal diversification. In addition, Synspermiata represent a wide diversity of spiders that are understudied and poorly understood Therefore, the aims of this project are to identify spider ohnologs after multiple WGDs, explore whether and how they have contributed to the evolutionary success of these animals, and compare the outcomes of these events to repeated WGDs in vertebrates. We will first collect and carry out the first large scale detailed study of the morphology of Synspermiata spiders to better understand their evolution and phenotypic diversity. In parallel, we will identify the ohnologs that have been retained in spider groups after WGDs by comparing the repertoire and arrangement of the duplicated genes in these animals with relatives where there is no evidence of additional WGDs. As part of this aim, we will sequence the genomes of Synspermiata spiders that have undergone one (Pholcus phalangioides, Scytodes thoracica and Loxosceles reclusa), and two (Oonops pulcher, Segestria senoculata and Dysdera crocata) WGD, as well as the transcriptomes of Caponiidae species with two (Orthonops zebra) or three (Calponia harrisonfordi) WGDs. Since relatively little is known about these spiders this will provide new insights into the biology of these animals as well as their genome evolution. We will then compare the repertoires of genes retained after WGD between spiders and vertebrates to determine whether there are any similarities in the aftermath of these events. This information will help us to better understand the general consequences of WGD and the principles underlying their outcomes in terms of genes being preferentially retained or lost again. Identification of ohnologs will also allow us to ask if these genes have been subject to sub-, neofunctionalisation or specialisation during spider development and if their expression is associated with morphological diversification. Overall our project will provide new insights into the genomes of spiders and how WGDs in these animals have contributed to their morphological evolution. Our data will also allow comparisons to WGD events in other animals, including vertebrates, to better understand the general consequences of these events and their contribution to animal adaptation and diversification. All Research products- arrow_drop_down - <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::114964cfaf16f9fa3ae24de59f4befa4&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu- more_vert All Research products- arrow_drop_down - <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::114964cfaf16f9fa3ae24de59f4befa4&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
- assignment_turned_in Project2022 - 2023Partners:California Academy of Sciences, Sorbonne University, Field Studies Council, California Academy of Sciences, Durham University +5 partnersCalifornia Academy of Sciences,Sorbonne University,Field Studies Council,California Academy of Sciences,Durham University,Free University of Brussels (ULB),FSC,ULB,Durham University,Sorbonne UniversityFunder: UK Research and Innovation Project Code: NE/T006854/2Funder Contribution: 272,594 GBP- The duplication of genes provides new genetic material that can be used for novel functions, allowing plants and animals to evolve biological innovations and adapt to environmental conditions. Whole genome duplication (WGD) is arguably the most dramatic mechanism for duplication, resulting in the production of a new copy of every gene in the nuclear genome. Around 430 million years ago, spiders and scorpions diverged from a common ancestor that had experienced a WGD. The retained duplicated genes from this WGD event (genes called ohnologs) can still be found in the genomes of the approximately 45,000 species of these animals alive today and may have contributed to their adaptation and diversification. Since then, some families of Synspermiata spiders have undergone at least two additional WGDs within a single lineage, reflecting a similar series of WGDs in vertebrates. This presents an opportunity to compare these events to determine whether there are general principals shaping the outcomes of WGDs and their contribution to animal diversification. In addition, Synspermiata represent a wide diversity of spiders that are understudied and poorly understood Therefore, the aims of this project are to identify spider ohnologs after multiple WGDs, explore whether and how they have contributed to the evolutionary success of these animals, and compare the outcomes of these events to repeated WGDs in vertebrates. We will first collect and carry out the first large scale detailed study of the morphology of Synspermiata spiders to better understand their evolution and phenotypic diversity. In parallel, we will identify the ohnologs that have been retained in spider groups after WGDs by comparing the repertoire and arrangement of the duplicated genes in these animals with relatives where there is no evidence of additional WGDs. As part of this aim, we will sequence the genomes of Synspermiata spiders that have undergone one (Pholcus phalangioides, Scytodes thoracica and Loxosceles reclusa), and two (Oonops pulcher, Segestria senoculata and Dysdera crocata) WGD, as well as the transcriptomes of Caponiidae species with two (Orthonops zebra) or three (Calponia harrisonfordi) WGDs. Since relatively little is known about these spiders this will provide new insights into the biology of these animals as well as their genome evolution. We will then compare the repertoires of genes retained after WGD between spiders and vertebrates to determine whether there are any similarities in the aftermath of these events. This information will help us to better understand the general consequences of WGD and the principles underlying their outcomes in terms of genes being preferentially retained or lost again. Identification of ohnologs will also allow us to ask if these genes have been subject to sub-, neofunctionalisation or specialisation during spider development and if their expression is associated with morphological diversification. Overall our project will provide new insights into the genomes of spiders and how WGDs in these animals have contributed to their morphological evolution. Our data will also allow comparisons to WGD events in other animals, including vertebrates, to better understand the general consequences of these events and their contribution to animal adaptation and diversification. All Research products- arrow_drop_down - <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::824621aabdd3668fe88d117513b50606&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu- more_vert All Research products- arrow_drop_down - <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::824621aabdd3668fe88d117513b50606&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
- assignment_turned_in Project2017 - 2022Partners:University of Leeds, University of St Andrews, China Geological Survey, Field Museum of Natural History, China University of Geosciences +16 partnersUniversity of Leeds,University of St Andrews,China Geological Survey,Field Museum of Natural History,China University of Geosciences,California Academy of Sciences,UMAB,China Geological Survey,UNIVERSITY OF READING,Chinese Academy of Sciences,California Academy of Sciences,STEMNET,Chinese Academy of Sciences,University of Maryland, College Park,CUG,Field Museum of Natural History,CAS,University of St Andrews,University of Leeds,Science, Technology, Engineering and Mathematics Network,University of ReadingFunder: UK Research and Innovation Project Code: NE/P013724/1Funder Contribution: 1,157,680 GBP- It is hard not to have a fascination for the Permo-Triassic mass extinction (PTME). No other catastrophe in history of the world was so far-reaching and all encompassing. Even the death of the dinosaurs does not look quite as bad when compared with the PTME because, even though these terrestrial giants were wiped out, lots of other things survived, especially at the bottom of the ocean. In contrast, no environment, no habitat and no location was safe at the end of the Permian. Death struck in the deepest oceans, in the shallowest waters, and from the equator to the pole. Understanding what happened during the PTME, ~250 myrs ago, and how life recovered is the subject of a new NERC-funded research programme. Called Eco-PT, it is a major collaboration between British and Chinese scientists. The finger of blame for the PTME points to a giant volcanic region in Siberia. These erupted at the time of the extinction and belched out huge volumes of damaging gases. This included carbon dioxide which is thought to have caused dramatic greenhouse warming and lead to dangerously hot, oxygen-poor and acidified oceans - all bad consequences for marine life. What isn't understood is why conditions got so bad - there have been other giant volcanic eruptions that have not done anywhere near so much harm. The project will look at the extinctions on land and in the sea to examine when and how these two very different ecosystems collapsed. Did everything die at once or did the extinction on land precede that in the oceans or vice versa? China has the best rocks in the world for such a study and intense collecting of fossils will help answer these questions. Precise controls on the age will be achieved using new, ultra-high precision age dating involving uranium decay in volcanic minerals. It is also possible that there was feedback between the terrestrial and marine extinctions, for example plant dieback on land may have changed nutrient input into the oceans and so altered plankton populations that normal food webs were no longer sustainable. The potential causes will be investigated using the latest techniques. Thus, a new technique, involving analysis of molecules in fossil pollen will be used to asses the role of ozone loss. Other volcanic gases, such a sulphur dioxide may also have been involved in the terrestrial extinction and this role can now be investigated by examining trace concentration of sulphur compounds and their isotopes preserved in terrestrial rocks that formed at this time in China. State-of-the-art modelling approaches will also be used to better understand regional and global climate changes during and after the mass extinction and to reconstruct the style of ecosystem recovery. Climate modelling of different scenarios will enable these conditions to be better understand and will help us understand the nature of super-greenhouse worlds with greater clarity. The prolonged recovery from the PTME is also one of the most fascinating intervals of the world's history. Some groups bounce back quickly whereas others remained in the doldrums for millions of years. The recovery style varied greatly; some groups show an increase in diversity but not their disparity whereas others show an increase of both. What this meant for ecosystem stability and its resilience (ability to cope with further stresses) will be investigated using ecosystem modelling approaches that look at interaction between species and the interplay between form and function in terrestrial animals. All Research products- arrow_drop_down - <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::078cf1352eab038da81f4e16d2d95c92&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu- more_vert All Research products- arrow_drop_down - <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::078cf1352eab038da81f4e16d2d95c92&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu