
Keeling and Walker Limited
Keeling and Walker Limited
4 Projects, page 1 of 1
assignment_turned_in Project2007 - 2011Partners:Toppan Printing Co. (UK) Ltd., DUPONT TEIJIN FILMS U.K. LIMITED, University of Oxford, Chemfilt Ionsputtering AB, Toppan (United Kingdom) +9 partnersToppan Printing Co. (UK) Ltd.,DUPONT TEIJIN FILMS U.K. LIMITED,University of Oxford,Chemfilt Ionsputtering AB,Toppan (United Kingdom),Keeling & Walker (United Kingdom),Chemfilt Ionsputtering AB,Gencoa Ltd,Kodak European Research,Gencoa (United Kingdom),Keeling and Walker Limited,DuPont (United Kingdom),DuPont Powder Coatings Ltd,Kodak LtdFunder: UK Research and Innovation Project Code: EP/F005296/1Funder Contribution: 247,668 GBPFunctional films underpin many electronic and opto-electronic devices, including flat panel displays, OLED's, image sensors, thin film photovoltaic solar cells, etc. Of particular importance to these devices are transparent conductive oxide (TCO) films, such as indium tin oxide (ITO) and aluminium-doped zinc oxide (ZAO). The UK market for functional films is expected to rise to 23.4B by 2010. Further substantial gains in productivity would be made, and new markets opened up, if the devices could be deposited directly onto polymeric web in very large throughput reel-to-reel coaters. However, the deposition of TCO films onto webs poses many significant technological challenges. In comparison to glass, polymeric webs are relatively rough, tend to outgas significantly and are thermally sensitive. The latter point particularly poses a problem, because it is generally necessary to perform a post-deposition annealing process (typically at 500 degC) in order to optimise the optical and electrical properties of TCO materials.One potential solution to this problem is to deposit coatings using the newly developed technique of high powered impulse magnetron sputtering (HIPIMS). This process involves the application of very large power pulses to magnetron sputter cathodes for short periods of time. The peak pulse power can be in the megawatt range and the pulse duration is typically of the order of 80-160 micro seconds, at repetition rates in the range of 10s to 100s of Hz. Initial studies of the HIPIMS (also referred to as high power pulsed magnetron sputtering / HPPMS) system have shown that this intense pulse creates a high degree of ionization (up to 70% for titanium) of the sputtered species with this technique (in contrast to conventional magnetron sputtering, where usually less than 1% of the sputtered material is ionized).The degree of ionization of the sputtered species in HIPIMS is comparable to that produced in cathodic arc discharges; however, with HIPIMS macroparticles are not normally produced. Another important consideration is that, due to the very low duty cycles (~1%) and long off times, the total heat load to the substrate can be very significantly (5-10 times) lower than in conventional DC and pulsed DC sputtering. Thus, the potential for HIPIMS is to harness the high degree of ionization to produce films with significantly improved properties, whilst maintaining a suitably low (sub-150 degC) substrate bulk temperature, allowing a diverse range of substrate materials to be coated. The introduction of HIPIMS technology, therefore, has the potential to provide a step-change in the performance of functional films, such as TCO's, deposited onto polymeric webs. This project will offer the first opportunity to study this new, complex deposition process in detail in both a development-scale system at MMU and an industrial pilot scale reel-to-reel coater at Oxford University. An additional key element of the project will be a detailed study of the nature of the discharge. Plasma characteristics such as the spatial and temporal evolution of the concentrations and temperatures of the species and their power loading of the substrate will be determined using an array of time-resolved diagnostic tools and well developed optical imaging techniques. The ability to deposit fully dense TCO coatings with optimised properties onto flexible substrates would be a major breakthrough and would represent a significant advancement in web coating technology.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5d3d737fb9cf8bbcf85e0cae049e7759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5d3d737fb9cf8bbcf85e0cae049e7759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2007 - 2011Partners:Kodak European Research, DuPont Powder Coatings Ltd, Manchester Metropolitan University, Chemfilt Ionsputtering AB, Keeling and Walker Limited +10 partnersKodak European Research,DuPont Powder Coatings Ltd,Manchester Metropolitan University,Chemfilt Ionsputtering AB,Keeling and Walker Limited,Toppan Printing Co. (UK) Ltd.,DUPONT TEIJIN FILMS U.K. LIMITED,MMU,Gencoa (United Kingdom),Gencoa Ltd,Toppan (United Kingdom),Keeling & Walker (United Kingdom),Kodak Ltd,Chemfilt Ionsputtering AB,DuPont (United Kingdom)Funder: UK Research and Innovation Project Code: EP/F003951/1Funder Contribution: 220,958 GBPFunctional films underpin many electronic and opto-electronic devices, including flat panel displays, OLED's, image sensors, thin film photovoltaic solar cells, etc. Of particular importance to these devices are transparent conductive oxide (TCO) films, such as indium tin oxide (ITO) and aluminium-doped zinc oxide (ZAO). The UK market for functional films is expected to rise to 23.4B by 2010. Further substantial gains in productivity would be made, and new markets opened up, if the devices could be deposited directly onto polymeric web in very large throughput reel-to-reel coaters. However, the deposition of TCO films onto webs poses many significant technological challenges. In comparison to glass, polymeric webs are relatively rough, tend to outgas significantly and are thermally sensitive. The latter point particularly poses a problem, because it is generally necessary to perform a post-deposition annealing process (typically at 500 degC) in order to optimise the optical and electrical properties of TCO materials.One potential solution to this problem is to deposit coatings using the newly developed technique of high powered impulse magnetron sputtering (HIPIMS). This process involves the application of very large power pulses to magnetron sputter cathodes for short periods of time. The peak pulse power can be in the megawatt range and the pulse duration is typically of the order of 80-160 micro seconds, at repetition rates in the range of 10s to 100s of Hz. Initial studies of the HIPIMS (also referred to as high power pulsed magnetron sputtering / HPPMS) system have shown that this intense pulse creates a high degree of ionization (up to 70% for titanium) of the sputtered species with this technique (in contrast to conventional magnetron sputtering, where usually less than 1% of the sputtered material is ionized).The degree of ionization of the sputtered species in HIPIMS is comparable to that produced in cathodic arc discharges; however, with HIPIMS macroparticles are not normally produced. Another important consideration is that, due to the very low duty cycles (~1%) and long off times, the total heat load to the substrate can be very significantly (5-10 times) lower than in conventional DC and pulsed DC sputtering. Thus, the potential for HIPIMS is to harness the high degree of ionization to produce films with significantly improved properties, whilst maintaining a suitably low (sub-150 degC) substrate bulk temperature, allowing a diverse range of substrate materials to be coated. The introduction of HIPIMS technology, therefore, has the potential to provide a step-change in the performance of functional films, such as TCO's, deposited onto polymeric webs. This project will offer the first opportunity to study this new, complex deposition process in detail in both a development-scale system at MMU and an industrial pilot scale reel-to-reel coater at Oxford University. An additional key element of the project will be a detailed study of the nature of the discharge. Plasma characteristics such as the spatial and temporal evolution of the concentrations and temperatures of the species and their power loading of the substrate will be determined using an array of time-resolved diagnostic tools and well developed optical imaging techniques. The ability to deposit fully dense TCO coatings with optimised properties onto flexible substrates would be a major breakthrough and would represent a significant advancement in web coating technology.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4ec72133eb980a0f1fc435edff297330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4ec72133eb980a0f1fc435edff297330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2007 - 2011Partners:Chemfilt Ionsputtering AB, Kodak Ltd, Kodak European Research, Gencoa Ltd, Toppan Printing Co. (UK) Ltd. +10 partnersChemfilt Ionsputtering AB,Kodak Ltd,Kodak European Research,Gencoa Ltd,Toppan Printing Co. (UK) Ltd.,DUPONT TEIJIN FILMS U.K. LIMITED,DuPont Powder Coatings Ltd,Keeling & Walker (United Kingdom),University of Liverpool,Keeling and Walker Limited,Gencoa (United Kingdom),DuPont (United Kingdom),Toppan (United Kingdom),University of Liverpool,Chemfilt Ionsputtering ABFunder: UK Research and Innovation Project Code: EP/F004605/1Funder Contribution: 123,933 GBPFunctional films underpin many electronic and opto-electronic devices, including flat panel displays, OLED's, image sensors, thin film photovoltaic solar cells, etc. Of particular importance to these devices are transparent conductive oxide (TCO) films, such as indium tin oxide (ITO) and aluminium-doped zinc oxide (ZAO). The UK market for functional films is expected to rise to 23.4B by 2010. Further substantial gains in productivity would be made, and new markets opened up, if the devices could be deposited directly onto polymeric web in very large throughput reel-to-reel coaters. However, the deposition of TCO films onto webs poses many significant technological challenges. In comparison to glass, polymeric webs are relatively rough, tend to outgas significantly and are thermally sensitive. The latter point particularly poses a problem, because it is generally necessary to perform a post-deposition annealing process (typically at 500 degC) in order to optimise the optical and electrical properties of TCO materials.One potential solution to this problem is to deposit coatings using the newly developed technique of high powered impulse magnetron sputtering (HIPIMS). This process involves the application of very large power pulses to magnetron sputter cathodes for short periods of time. The peak pulse power can be in the megawatt range and the pulse duration is typically of the order of 80-160 micro seconds, at repetition rates in the range of 10s to 100s of Hz. Initial studies of the HIPIMS (also referred to as high power pulsed magnetron sputtering / HPPMS) system have shown that this intense pulse creates a high degree of ionization (up to 70% for titanium) of the sputtered species with this technique (in contrast to conventional magnetron sputtering, where usually less than 1% of the sputtered material is ionized).The degree of ionization of the sputtered species in HIPIMS is comparable to that produced in cathodic arc discharges; however, with HIPIMS macroparticles are not normally produced. Another important consideration is that, due to the very low duty cycles (~1%) and long off times, the total heat load to the substrate can be very significantly (5-10 times) lower than in conventional DC and pulsed DC sputtering. Thus, the potential for HIPIMS is to harness the high degree of ionization to produce films with significantly improved properties, whilst maintaining a suitably low (sub-150 degC) substrate bulk temperature, allowing a diverse range of substrate materials to be coated. The introduction of HIPIMS technology, therefore, has the potential to provide a step-change in the performance of functional films, such as TCO's, deposited onto polymeric webs. This project will offer the first opportunity to study this new, complex deposition process in detail in both a development-scale system at MMU and an industrial pilot scale reel-to-reel coater at Oxford University. An additional key element of the project will be a detailed study of the nature of the discharge. Plasma characteristics such as the spatial and temporal evolution of the concentrations and temperatures of the species and their power loading of the substrate will be determined using an array of time-resolved diagnostic tools and well developed optical imaging techniques. The ability to deposit fully dense TCO coatings with optimised properties onto flexible substrates would be a major breakthrough and would represent a significant advancement in web coating technology.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::facf9f33344c1a58b57eee1c8a660db2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::facf9f33344c1a58b57eee1c8a660db2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2024Partners:Tata Group UK, Precision Varionic International Ltd PVi, Wrap (United Kingdom), Keeling & Walker (United Kingdom), PLUG LIFE CONSULTING LTD +12 partnersTata Group UK,Precision Varionic International Ltd PVi,Wrap (United Kingdom),Keeling & Walker (United Kingdom),PLUG LIFE CONSULTING LTD,PLUG LIFE CONSULTING LTD,Swansea University,adphos Group (International),Tata Steel (United Kingdom),WRAP,Elemental Inks & Chemicals,Keeling and Walker Limited,adphos Group (International),Elemental Inks & Chemicals,Precision Varionic International (United Kingdom),Deregallera Ltd,Swansea UniversityFunder: UK Research and Innovation Project Code: EP/W019167/1Funder Contribution: 1,005,540 GBPWhen devices such as computers, smart phones and batteries are sent for recycling not all of the materials are captured for use in new devices. The metals are most likely to be recycled because they are easy to separate and their methods of recycling are well established. Specialist coatings often made with rare and expensive materials enable our modern electronics to work. However these coatings often cause problems when it comes to recycling, they can mean that the metals are more contaminated and so these coatings are often burnt off, causing pollution and adding cost to the recycling process. It also means that the expensive cleverly engineered coating has been lost and its value not realised. TReFCo aims to develop a low cost method for removing these coatings so that they can be reused to make new devices. This will have multiple benefits; it will mean that valuable raw materials are kept within the supply chain, supporting the UK economy. It will also mean that the materials that they were coated on are cleaner prior to their recycling process ensuring a purer recycled product at a lower cost. The method employed by TReFCo will be to subject the coatings to near infrared radiation to burn the binder (glue) that holds the coating in place without damaging the coating material or the substrate material. TReFCo will also develop new adhesives that will 'unglue' when exposed to near infrared radiation, making it easier (and cheaper) to take devices apart before they are recycled. This could also be used within a repair process. In addition to the technical developments during the project a lifecycle analysis will be undertaken - this will ensure that researchers fully understand the environmental costs of producing materials and recycling them. Identifying any areas that are environmentally damaging in order that they can be avoided by material design or by changing the processing methods. In all the aim of the project is to make the possibility of a truly circular economy one step closer to being a reality.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1182304f2b4881fb7627b6b811cf153b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1182304f2b4881fb7627b6b811cf153b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu