
Specialist Computer Centres Ltd (SCC)
Specialist Computer Centres Ltd (SCC)
2 Projects, page 1 of 1
assignment_turned_in Project2024 - 2026Partners:PAK Engineering, Aston University, BELFAST CITY COUNCIL, Specialist Computer Centres Ltd (SCC), Kinder Energy Ltd +3 partnersPAK Engineering,Aston University,BELFAST CITY COUNCIL,Specialist Computer Centres Ltd (SCC),Kinder Energy Ltd,BIRMINGHAM CITY COUNCIL,Phase Change Material Products (United Kingdom),Tyseley Energy Park LimitedFunder: UK Research and Innovation Project Code: EP/Z533129/1Funder Contribution: 414,885 GBPA recent study by UK universities found that cooling currently accounts for 10-20% of the country's energy consumption, and the demand for cooling is expected to increase several-fold in the coming years. The Imperial College's Demand.ninja model shows that London is experiencing the fastest increase in cooling demand worldwide, mainly due to frequent and severe heatwaves. A separate study from the University of Oxford warns that the UK is unprepared for a 30% relative increase in cooling demand, the third-largest globally, after Ireland and Switzerland. Additionally, emerging sectors such as hydrogen production require significant cooling for efficient storage and distribution, with the production of ammonia as a hydrogen carrier being a high cooling demand process at 2.8 GJ/ton-ammonia. Cooling is an energy intensive practice. If we continue to use grid electricity to power cooling systems, along with the increasing demand for other uses like electric vehicles, the grid will become significantly strained, hindering its decarbonisation. The Reef-UKC network aims to lead research in discovering the next generation of renewable energy technologies to meet the growing demand for cooling. We'll undertake evidence-based, multidisciplinary research using pump-priming funds and networking activities to leverage renewable energy sources for cooling. Our research will maximise system-level integration benefits while addressing the unique challenges of the UK's economic, environmental, societal, behavioural, and political contexts. Since cooling is a multidimensional challenge, we will focus on several fronts (F) to achieve our goals. F1: Develop efficient renewable-powered cooling system-level solutions to meet the existing and future demand for cooling, specifically in rapidly growing sectors, e.g., Hydrogen, data centres. F2: Consider environmental and social impacts and behavioural changes. F3: Contemplate Cold economy, business modelling, sustainability, and design for circularity. F4: Integrate the developed solutions with the developed cooling (and potentially heating) networks approaches by other research initiatives. F5: Develop policies and regulatory frameworks to incentivise the adoption of the technology packages and communication with the UK government and local authorities.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7d15ee6d23064febca31560c8c2e39c5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7d15ee6d23064febca31560c8c2e39c5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2031Partners:University of Birmingham, Rochdale Development Agency, Zero Waste Scotland, Brighton & Hove Chamber of Commerce, Chatham House +29 partnersUniversity of Birmingham,Rochdale Development Agency,Zero Waste Scotland,Brighton & Hove Chamber of Commerce,Chatham House,B-ON,Vanguard AG,Specialist Computer Centres Ltd (SCC),Toshiba Europe Limited,CeeD (Ctr for Eng, Education and Dev),KUKA (United Kingdom),Mackie Automatic & Manual Transmissions,Oakdene Hollins (United Kingdom),University of Birmingham Enterprise Ltd,West Yorkshire Combined Authority,AMDR,West Midlands Combined Authority,Bouygues E&S UK Limited,Inovo Robotics,Airbus Operations Limited,Environcom England Ltd,Siemens Healthcare (Healthineers) Ltd,Ecoshred Ltd,European Metal Recycling (EMR),Mkango Resources Limited,Siemens plc (UK),Health and Safety Executive (HSE),Rotary Engineering UK Ltd,University Hospitals Birmingham NHS FT,Green Angel Syndicate,ELECTROFIT INDUSTRIAL SOLUTIONS (EIS),ZF Automotive UK Limited,Clean Growth UK,Tyseley Energy Park LimitedFunder: UK Research and Innovation Project Code: EP/Z532873/1Funder Contribution: 11,839,500 GBPThe Circular Economy requirements and sustainability goals have been set out by the UK government and the United Nations to address the climate crisis and maintain our standard of living. The environmental impact from the global consumption of engineering materials is expected to double in the next forty years (OECD: Global Material Recourses to 2060, 2018), while annual waste generation is projected to increase by 70% by 2050 (World Bank What a Waste 2.0 report, 2018). A radical departure from traditional forward manufacturing is needed that no longer exclusively focuses on the original manufacturing process and the end of life dispose of manufactured products, parts, and materials. Processes are needed that will significantly prolong the useful life of engineering and especially critical materials (minerals with high economic vulnerability and high global supply risk e.g. rare earth elements for batteries, magnets and medical devices) by increasing the effectiveness of reuse, repurpose, repair, remanufacture, and recycle (Re-X) manufacturing processes. These Re-X processes are currently 3-6 times more labour intensive than traditional manufacturing processes. They are often not economic resulting in many engineering materials being disposed on landfill sites, degraded, or incinerated. UK businesses could benefit by up to £23 billion per year through low cost or no cost improvements in the efficient use of resources. The vision of this hub is to pursue an integrated, holistic approach toward creating a new manufacturing ecosystem for circular resource use of high value products through advances in AI and intelligent automation, empowering the UK to be a world leader in circular manufacturing. To deliver this ambition the hub will focused on two grand challenges: GC1: Radically transform the sustainable use of critical materials. (Goal: >75% Critical components reuse; >20% critical material use decrease; >50% component reclaim increase). GC2: Radically improve the productivity of Re-X manufacturing processes on par with or exceeding traditional forward manufacturing processes (Goal: >10 times improvement). To address these, the hub will establish a truly interdisciplinary team cutting across Manufacturing, Robotics, AI and Automation, Materials Science, Chemical Engineering, Chemistry, Economics, and Life Cycle Assessment.?The hub will focus on three major fronts: Research excellence, community building and user engagement. The new research required to address the grand challenges and overcome the barriers and limitations preventing the transition to a truly circular manufacturing ecosystem will investigate: - New smart processes for disassembly, remanufacturing, separation, and recovery of critical products, components, and ultimately materials. - New sensing and analysis processes to track and determine the state of critical materials throughout their life. - New design methodologies for circular manufacturing. - New testing and validation methods to certify the remaining useful life of crucial products, components, and materials. - New circular Re-X business models. Our research programme will enable rapid scale up of Robotics and AI solutions that are compatible with sector practice, extensible via modular design, and can be repurposed initially in four flagship sector scenarios: energy, medical devices, electric drives, and large structures. Consequently, this Hub will directly address the 80% of the environmental impact of high-value products (Circular Economy Action Plan, European Union, 2020), and save more than 8M tonnes of CO2 emissions annually (HM Government Building our Industrial Strategy report, 2017).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ed4939c0354a0406df9f38f2deff657c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ed4939c0354a0406df9f38f2deff657c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu