
Port of Tyne
Port of Tyne
4 Projects, page 1 of 1
assignment_turned_in Project2024 - 2032Partners:Northern Gas Networks, Forge Nano, Royal Society of Chemistry Publishing, South Tyneside Council, NATIONAL ENERGY ACTION +26 partnersNorthern Gas Networks,Forge Nano,Royal Society of Chemistry Publishing,South Tyneside Council,NATIONAL ENERGY ACTION,National Nuclear Laboratory (NNL),UJ,Kurt J. Lesker (United Kingdom),JOHNSON MATTHEY PLC,Royal Air Force (RAF),NEWCASTLE CITY COUNCIL,Northern Powergrid (United Kingdom),Emerald Green Power,North East LEP (Local Enterprise),Northern Lithium,North Tyneside Council,Durham County Council,Procter & Gamble Limited (P&G UK),SUEZ Recycling and Recovery UK Ltd,CPACT,Northumberland County Council,Horiba UK Ltd,Net Zero North East England,Northumbrian Water Group plc,Centre for Process Innovation CPI (UK),NSG Group (UK),Port of Tyne,Tescan UK Ltd,SCG Chemicals (Thailand),Northumbria University,University of CalgaryFunder: UK Research and Innovation Project Code: EP/Y035542/1Funder Contribution: 5,289,250 GBPThe ESPRC Centre for Doctoral Training in Renewable Energy Northeast Universities Plus (ReNU+) is a transformative programme that will train a new generation of Doctoral Carbon Champions (DCCs) who are characterised by scientific and engineering excellence and capable of interdisciplinary systemic thinking to accelerate Net Zero. The outcome from ReNU+ will be that DCCs will meet critical needs in high-skill employment across industry, policy, education and government and convert key challenges in resilience and equity into economic opportunities for the United Kingdom. This will be achieved through a professionally accredited training programme in a thriving environment of research excellence led by Northumbria, Newcastle and Durham universities. The 2023-2035 energy landscape sets a compelling context for ReNU+ and in particular, the need for future leaders in this space in the United Kingdom. Locally generated renewable energy will provide the UK with increased energy security and critically important additions in electricity capacity to meet domestic and industrial demands. This is only one piece of the landscape however, which also includes sustainability (e.g. critical materials supply), resilience (e.g. climate change mitigation) and an equitable transition to Net Zero, which offers both economic and health benefits. The absorptive capacity for ReNU+ DCCs is partly evidenced by the forecast of 694,000 new UK jobs in the low carbon and renewable energy economy by 2030 (source: UK Local Government Association). The ReNU+ training programme has a core focus on developing key skills that facilitate understanding of and engagement with the wider Net Zero system including investment, regulation and end-user engagement. It will become a reference for high-skill training in Net Zero that redefines the role of scientists and engineers as critical catalysts for decarbonisation who deliver impact well beyond technology. ReNU+ identifies a critical link between equality, diversity and inclusivity and decarbonisation and includes key innovations to leverage this link. Consequently, DCCs will also develop societal and citizenship values as they become living examples of the future workforces to enable an equitable and sustainable transition to Net Zero. This approach has been validated by our partners who have co-designed and will co-deliver the ReNU+ training programme. This support includes national and local Government, multinational companies, small-to-medium enterprises and charity organisations.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5062a5cae358b30ddb05c9c37bd3a524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5062a5cae358b30ddb05c9c37bd3a524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2028Partners:TUV SUD (UK), Celsa Steel UK, Northern Gas Networks, Build Solar Limited, Department for Transport +36 partnersTUV SUD (UK),Celsa Steel UK,Northern Gas Networks,Build Solar Limited,Department for Transport,Cadent Gas Ltd,Northern Powergrid (United Kingdom),B9 Energy Ltd,Horiba UK Ltd,Mutual Energy Limited,Siemens Energy Ltd,Environmental Resources Management (United Kingdom),Robert Bosch (Germany),Lhyfe UK Ltd,University of Galway,Shell (Netherlands),Scottish Enterprise,International Energy Research Centre,Electric Aviation Group,North of Tyne Combined Authority,IGEM (Inst of Gas Engineers & Managers),GE (General Electric Company) UK,University of Birmingham,University of Surrey,Loganair Limited,Energy Technology Partnership,Port of Tyne,OFFSHORE RENEWABLE ENERGY CATAPULT,Scottish Water (United Kingdom),Wales & West Utilities,The Crichton Trust,British Engines Limited,North East LEP (Local Enterprise),HyDEX,National Grid (United Kingdom),Scottish and Southern Energy SSE plc,Toshiba Europe Limited (UK),Simply Blue Energy,Altrad Babcock,EI-H2,Donegal County CouncilFunder: UK Research and Innovation Project Code: EP/X038823/2Funder Contribution: 9,864,320 GBPHydrogen and alternative liquid fuels (HALF) have an essential role in the net-zero transition by providing connectivity and flexibility across the energy system. Despite advancements in the field of hydrogen research both in the physical sciences and engineering, significant barriers remain to the scalable adoption of hydrogen and alternative liquid fuel technologies, and energy services, into the UK's local and national whole system infrastructure. These are technical barriers, organisational barriers, regulatory and societal barriers, and financial barriers. There are, therefore, significant gaps between current levels of hydrogen production, transportation, storage, conversion, and usage, and the estimated requirement for achieving net-zero by 2050. To address this, our proposed research programme has four interlinked work packages. WP1 will develop forward-thinking HALF technology roadmaps. We will assess supply chain availability and security. Selected representative HALF use cases will be used to identify and quantify any opportunities, risks and dependencies within a whole systems analysis. We will also develop an overarching roadmap for HALF system integration in order to inform technology advancement, industry and business development, as well as policy making and social interventions. WP2 will improve HALF characterisation and explore urgent new perspectives on the energy transition, including those related to ensuring resilience and security while also achieving net-zero. We will contrast the energy transition delivered by real incentives/behaviour versus those projected by widely-used optimisation models. The WP provides the whole systems modelling engine of the HI-ACT Hub, with a diverse array of state-of-the-art tools to explore HALF integration. WP 3 will explore the vital coupling of data and information relating to whole system planning and operational decision support, through the creation of a cyber physical architecture (CPA). This will generate new learning on current and future opportunities and risks, from a data and information perspective, which will lead to a whole system ontology for accelerated integration of hydrogen technologies. WP 4 considers options for a future energy system with HALF from a number of perspectives. The first is to consider expert views on HALF energy futures, and the public perceptions of those views. The second perspective considers place-based options for social benefit in HALF energy futures. The third perspective is to consider regulatory and policy options which would better enable HALF futures. Embedded across the research programme is the intent to create robust tools which are investment-oriented in their analysis. A Whole Systems and Energy Systems Integration approach is needed here, in order to better understand the interconnected and interdependent nature of complex energy systems from a technical, social, environmental and economic perspective. The Hub is led by Prof Sara Walker, Director of the EPSRC National Centre for Energy Systems Integration, supported by a team of 16 academics at a range of career stages. The team have extensive experience of large energy research projects and strong networks of stakeholders across England, Wales, Scotland and Northern Ireland. They bring to the Hub major hydrogen demonstrators through support from partners involved in InTEGReL in Gateshead, ReFLEX in Orkney, and FLEXIS Demonstration in South Wales for example. We shall engage to create a vibrant, diverse, and open community that has a deeper understanding of whole systems approaches and the role of hydrogen and alternative liquid fuels within that. We shall do so in a way which embeds Equality, Diversity and Inclusion in the approach. We shall do so in a way which is a hybrid of virtual and in-person field work consultation and develop appropriate digital tools for engagement.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::792c56160b9cb33951b50d4f10143b19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::792c56160b9cb33951b50d4f10143b19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2023 - 2028Partners:STFC, Fujitsu (United Kingdom), Arup Group (United Kingdom), UK Research Centre in NDE, Iknaia Limited +37 partnersSTFC,Fujitsu (United Kingdom),Arup Group (United Kingdom),UK Research Centre in NDE,Iknaia Limited,The Alan Turing Institute,AstraZeneca (United Kingdom),Digital Catapult,Scottish Research Partnership in Eng,AddQual,UK Coll for Res in Infra & Cities UKCRIC,Viettel Group,Jacobs,COWI UK Limited,GSK (Global),Virtual Physiological Human Institute,Association of Chief Police Officers,Qinetiq (United Kingdom),Discovery Park Limited,KEEN AI Ltd,Nissan (United Kingdom),Hadean Supercomputing Ltd,Network Rail,Health and Safety Executive,Newcastle Health Innovation Partners,Be-St,Medtronic (United States),The MathWorks Inc,The National Robotarium,BTL Group LTD,Information Junction Ltd,Anglian Water Services (United Kingdom),Ansys (United States),Pinsent Masons (United Kingdom),Connected Places Catapult,Port of Tyne,Scotland's Rural College,EDF Energy (United Kingdom),Dover Harbour Board (DHB),DAFNI Data & Analytics Fac f Natl Infra,Environment Agency,BMT Group (United Kingdom)Funder: UK Research and Innovation Project Code: EP/Y016289/1Funder Contribution: 3,214,310 GBPDigital twins are a fusion of digital technologies considered by many leading advocates to be revolutionary in nature. Digital twins offer exciting new possibilities across a wide range of sectors from health, environment, transport, manufacturing, defence, and infrastructure. By connecting the virtual and physical worlds (e.g. cyber-physcial), digital twins are able to better support decisions, extend operational lives, and introduce multiple other efficiencies and benefits. As a result, digital twins have been identified by government, professional bodies and industry, as a key technology to help address many of the societal challenges we face. To date, digital twin (DT) innovation has been strongly driven by industry practitioners and commercial innovators. As would be expected with any early-adoption approach, projects have been bespoke & often isolated, and so there is a need for research to increase access, lower entry costs and develop interconnectivity. Furthermore, there are several major gaps in underpinning academic research relating to DT. The academic push has been significantly lagging behind the industry pull. As a result, there is an urgent need for a network that will fill gaps in the underpinning research for topics such as; uncertainty, interoperability, scaling, governance & societal effects. In terms of existing networking activities, there are several industry-led user groups and domain-specific consortia. However, there has never been a dedicated academic-led DT network that brings together academic research teams across the entire remit of UKRI with user-led groups. DTNet+ will address this gap with a consortium which has both sufficient breadth and depth to deliver transformative change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ddc485f41f418fe646265cde970a35d2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ddc485f41f418fe646265cde970a35d2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2023 - 2024Partners:Lhyfe UK Ltd, Altrad Babcock, OFFSHORE RENEWABLE ENERGY CATAPULT, Scottish Water (United Kingdom), Environmental Resources Management (United Kingdom) +41 partnersLhyfe UK Ltd,Altrad Babcock,OFFSHORE RENEWABLE ENERGY CATAPULT,Scottish Water (United Kingdom),Environmental Resources Management (United Kingdom),Mutual Energy Limited,University of Galway,Donegal County Council,North East LEP (Local Enterprise),University of Surrey,TUV SUD (UK),Scottish and Southern Energy SSE plc,Scottish and Southern Energy (United Kingdom),Celsa Steel UK,Cadent Gas Ltd,Electric Aviation Group,Northern Powergrid (United Kingdom),North of Tyne Combined Authority,UCG,National Grid (United Kingdom),Robert Bosch (Germany),Loganair Limited,HyDEX,EI-H2,Department for Transport,Port of Tyne,Build Solar Limited,Toshiba Europe Limited (UK),IGEM (Inst of Gas Engineers & Managers),Energy Technology Partnership,Scottish Enterprise,International Energy Research Centre,B9 Energy Ltd,The Crichton Trust,TÜV SÜD (United Kingdom),Shell (Netherlands),Horiba UK Ltd,Simply Blue Energy,Newcastle University,Offshore Renewable Energy Catapult,GE (General Electric Company) UK,General Electric (United Kingdom),Siemens Energy Ltd,Wales & West Utilities,British Engines Limited,Northern Gas NetworksFunder: UK Research and Innovation Project Code: EP/X038823/1Funder Contribution: 10,675,400 GBPHydrogen and alternative liquid fuels (HALF) have an essential role in the net-zero transition by providing connectivity and flexibility across the energy system. Despite advancements in the field of hydrogen research both in the physical sciences and engineering, significant barriers remain to the scalable adoption of hydrogen and alternative liquid fuel technologies, and energy services, into the UK's local and national whole system infrastructure. These are technical barriers, organisational barriers, regulatory and societal barriers, and financial barriers. There are, therefore, significant gaps between current levels of hydrogen production, transportation, storage, conversion, and usage, and the estimated requirement for achieving net-zero by 2050. To address this, our proposed research programme has four interlinked work packages. WP1 will develop forward-thinking HALF technology roadmaps. We will assess supply chain availability and security. Selected representative HALF use cases will be used to identify and quantify any opportunities, risks and dependencies within a whole systems analysis. We will also develop an overarching roadmap for HALF system integration in order to inform technology advancement, industry and business development, as well as policy making and social interventions. WP2 will improve HALF characterisation and explore urgent new perspectives on the energy transition, including those related to ensuring resilience and security while also achieving net-zero. We will contrast the energy transition delivered by real incentives/behaviour versus those projected by widely-used optimisation models. The WP provides the whole systems modelling engine of the HI-ACT Hub, with a diverse array of state-of-the-art tools to explore HALF integration. WP 3 will explore the vital coupling of data and information relating to whole system planning and operational decision support, through the creation of a cyber physical architecture (CPA). This will generate new learning on current and future opportunities and risks, from a data and information perspective, which will lead to a whole system ontology for accelerated integration of hydrogen technologies. WP 4 considers options for a future energy system with HALF from a number of perspectives. The first is to consider expert views on HALF energy futures, and the public perceptions of those views. The second perspective considers place-based options for social benefit in HALF energy futures. The third perspective is to consider regulatory and policy options which would better enable HALF futures. Embedded across the research programme is the intent to create robust tools which are investment-oriented in their analysis. A Whole Systems and Energy Systems Integration approach is needed here, in order to better understand the interconnected and interdependent nature of complex energy systems from a technical, social, environmental and economic perspective. The Hub is led by Prof Sara Walker, Director of the EPSRC National Centre for Energy Systems Integration, supported by a team of 16 academics at a range of career stages. The team have extensive experience of large energy research projects and strong networks of stakeholders across England, Wales, Scotland and Northern Ireland. They bring to the Hub major hydrogen demonstrators through support from partners involved in InTEGReL in Gateshead, ReFLEX in Orkney, and FLEXIS Demonstration in South Wales for example. We shall engage to create a vibrant, diverse, and open community that has a deeper understanding of whole systems approaches and the role of hydrogen and alternative liquid fuels within that. We shall do so in a way which embeds Equality, Diversity and Inclusion in the approach. We shall do so in a way which is a hybrid of virtual and in-person field work consultation and develop appropriate digital tools for engagement.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4b63c7a2f52b9669a0ef20ef69a7fa94&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4b63c7a2f52b9669a0ef20ef69a7fa94&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu