Powered by OpenAIRE graph
Found an issue? Give us feedback

Dsposal

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: MR/X036081/1
    Funder Contribution: 1,560,640 GBP

    Vision - The fellowship seeks to radically transform the linear Waste Electrical and Electronic Equipment (WEEE) system to develop a low-carbon, Circular Economy (CE) for Electrical and Electronic Equipment (EEE) in the UK. This fellowship incorporates a programme of research that establishes an innovative whole systems design approach to WEEE, integrating systems engineering, engineering design and product-service system design methodologies. The fellowship will to lead the academic work necessary to support a fully CE for EEE in the UK, through effective reduce, reuse, repair, remanufacturing, recycling and recovery, with the aim of making the UK the first country in the world to eliminate WEEE. Rationale and strategic importance - The rapid development of digitalisation has brought disruptive changes to the economy and life, as well as a growth in the consumption of Electrical and Electronic Equipment (EEE). Waste Electrical and Electronic Equipment (WEEE) is now the fastest growing waste stream in the UK and globally. The UK generates up to 24.9kg per head and throws 155,000 tonnes of WEEE in household bins every year. In 2013, the UK set out WEEE Regulations, to encourage safe and responsible collection, recycling and recovery. However, WEEE collection rates show that the UK is failing to meet its targets. Less that 35% of EEE placed on the market is recovered, meaning that the vast majority is sent to landfill, incinerated or illegally exported to other countries at its end of life. Developing a Circular Economy (CE) for EEE is expected to result in widespread economic, environmental and societal benefits for the UK. The value of precious metals found within UK's unrecovered WEEE is over £370 million annually. WEEE also includes many critical raw materials (e.g. magnesium, cobalt and tungsten) which are of high supply chain risk and importance to the UK. For example, China provides 98% of the EU's supply of rare earth elements, and South Africa provides 71% of the EU's platinum. Increasing the recovery of such critical raw materials from WEEE is therefore a strategic priority for the UK to mitigate supply chain risks. In addition, the effective recovery of WEEE is critical to achieving the UK's net zero targets. For every tonne of e-waste collected and recycled, 1.44 tonnes of CO2 emissions are avoided. Finally, WEEE that is not properly managed and leaks into the environment can be extremely damaging to nature and human health. A CE for EEE will also eliminate reliance on highly-polluting mining and material extraction industries. Academic contribution - Existing research has addressed problems in the WEEE sector across different life-cycle phases including: material extraction (e.g. technology metals circularity), manufacturing (e.g. increasing post-consumer plastic in WEEE), distribution (e.g. circular business models), use (e.g. emotional durability, repair), and, end of life (e.g. novel recycling technologies). However, a holistic perspective is currently lacking, which is needed to transition to a fully CE for EEE. This fellowship will address these limitations and build on an established body of research to develop novel solutions for a low-carbon, CE for EEE in the UK. It is academically excellent in that it will: (1) generate scientific knowledge and data on the WEEE system in the UK, which includes material flow analysis and data on related carbon emissions. This data can be used to inform decision-making, policy and research; (2) develop novel (technology-enabled) solutions for a CE for EEE in the UK. These solutions can be replicated in other contexts via circular product design and circular business model frameworks; (3) establish an innovative whole systems design methodological approach, which can be applied to study other material streams (e.g. plastics, textiles), to enable a low-carbon, resource-efficient CE.

    more_vert
  • Funder: UK Research and Innovation Project Code: MR/X036081/2

    Vision - The fellowship seeks to radically transform the linear Waste Electrical and Electronic Equipment (WEEE) system to develop a low-carbon, Circular Economy (CE) for Electrical and Electronic Equipment (EEE) in the UK. This fellowship incorporates a programme of research that establishes an innovative whole systems design approach to WEEE, integrating systems engineering, engineering design and product-service system design methodologies. The fellowship will to lead the academic work necessary to support a fully CE for EEE in the UK, through effective reduce, reuse, repair, remanufacturing, recycling and recovery, with the aim of making the UK the first country in the world to eliminate WEEE. Rationale and strategic importance - The rapid development of digitalisation has brought disruptive changes to the economy and life, as well as a growth in the consumption of Electrical and Electronic Equipment (EEE). Waste Electrical and Electronic Equipment (WEEE) is now the fastest growing waste stream in the UK and globally. The UK generates up to 24.9kg per head and throws 155,000 tonnes of WEEE in household bins every year. In 2013, the UK set out WEEE Regulations, to encourage safe and responsible collection, recycling and recovery. However, WEEE collection rates show that the UK is failing to meet its targets. Less that 35% of EEE placed on the market is recovered, meaning that the vast majority is sent to landfill, incinerated or illegally exported to other countries at its end of life. Developing a Circular Economy (CE) for EEE is expected to result in widespread economic, environmental and societal benefits for the UK. The value of precious metals found within UK's unrecovered WEEE is over £370 million annually. WEEE also includes many critical raw materials (e.g. magnesium, cobalt and tungsten) which are of high supply chain risk and importance to the UK. For example, China provides 98% of the EU's supply of rare earth elements, and South Africa provides 71% of the EU's platinum. Increasing the recovery of such critical raw materials from WEEE is therefore a strategic priority for the UK to mitigate supply chain risks. In addition, the effective recovery of WEEE is critical to achieving the UK's net zero targets. For every tonne of e-waste collected and recycled, 1.44 tonnes of CO2 emissions are avoided. Finally, WEEE that is not properly managed and leaks into the environment can be extremely damaging to nature and human health. A CE for EEE will also eliminate reliance on highly-polluting mining and material extraction industries. Academic contribution - Existing research has addressed problems in the WEEE sector across different life-cycle phases including: material extraction (e.g. technology metals circularity), manufacturing (e.g. increasing post-consumer plastic in WEEE), distribution (e.g. circular business models), use (e.g. emotional durability, repair), and, end of life (e.g. novel recycling technologies). However, a holistic perspective is currently lacking, which is needed to transition to a fully CE for EEE. This fellowship will address these limitations and build on an established body of research to develop novel solutions for a low-carbon, CE for EEE in the UK. It is academically excellent in that it will: (1) generate scientific knowledge and data on the WEEE system in the UK, which includes material flow analysis and data on related carbon emissions. This data can be used to inform decision-making, policy and research; (2) develop novel (technology-enabled) solutions for a CE for EEE in the UK. These solutions can be replicated in other contexts via circular product design and circular business model frameworks; (3) establish an innovative whole systems design methodological approach, which can be applied to study other material streams (e.g. plastics, textiles), to enable a low-carbon, resource-efficient CE.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/V01045X/1
    Funder Contribution: 900,208 GBP

    One Bin to Rule Them All is an innovative, interdisciplinary research project focused on developing a streamlined standard for plastics recycling which can be rolled out across UK homes, businesses and urban infrastructures. Working with stakeholders from across the plastics supply chain, including manufacturers, retailers and consumers, the project prioritises the value in plastic waste materials to ensure more effective and efficient pathways for recycling. Thus, reducing overall plastic waste and ensuring that future plastics are produced from higher recycled content. David Attenborough's Blue Planet II has highlighted the urgent global need to address plastic waste, pushing the issue into the forefront of the public mind. Whilst retailers and manufacturers are focused on improving the recycled content of their packaging, there is simply a lack of quality recyclable material available in the UK. Inadequate recycling infrastructure causes 60% of single use packaging to be exported, much of which is then incinerated. Not only is this a waste of valuable recyclable materials but there are significant environmental impacts involved in moving such waste across the globe and then burning it. One Bin will develop and integrate modern recycling technologies and processes in order to eliminate plastic release into the environment. This will be achieved through three interdisciplinary and interrelated work packages: Work package 1, led by material science, will create a hierarchy of plastic packaging to determine the optimal route for capturing and retaining value in plastic waste through re-use, mechanical recycling or chemical recycling. Work package 2, led by management science and economics, will design and then trial innovations for One Bin business models along the plastic packaging supply chain, identifying new business opportunities and pathways to design out waste. Work package 3, led by social science, will examine consumer engagement with One Bin and potential barriers to adoption through a consumer trial of the One Bin system, pre and post trial consumer interviews and a focus group with key stakeholders. By recognising and releasing the value in plastic waste, and standardising the current UK plastic waste management system, One Bin will overcome the current complexities surrounding plastic recycling and contribute to the UK Plastic Pact goals. The potential benefits from the project are significant, including: a) Reducing plastic release into the environment through enabling the creation of a truly circular plastics economy and a long-term elimination of plastic release. b) Creating an easy-to-use, standardised waste system for consumers that can be rolled out across the UK and incorporated into households, work places and leisure settings. c) Releasing and achieving economic value by identifying the most efficient recycling pathways and business models for different types of plastic.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.