
Johnson Matthey Plc
Johnson Matthey Plc
145 Projects, page 1 of 29
assignment_turned_in Project2019 - 2023Partners:Johnson Matthey (United Kingdom), Johnson Matthey, Johnson Matthey Plc, Imperial College LondonJohnson Matthey (United Kingdom),Johnson Matthey,Johnson Matthey Plc,Imperial College LondonFunder: UK Research and Innovation Project Code: EP/S036628/1Funder Contribution: 423,567 GBPThe chemistry of carbon monoxide (CO) and carbon dioxide (CO2) is deeply embedded in our future plans for energy production, chemical manufacturing and sustainable living. Remediation of CO2 has become a major topic of research in the last ten years and conversion of CO to hydrocarbons is already being applied on vast scales in industry. Catalysis underpins the development of this industry. COx-to-fuels, COx-to-molecules and COx-to-materials (x = 1 or 2) research is indispensable for the growth of the economy, improvement of quality of life, and regulation of gas emissions that contribute to climate change. Arguably the most established technology operating in this landscape if Fischer-Tropsch (F-T) catalysis. The F-T process converts mixtures of CO and H2 into short to medium chain hydrocarbons. Recent research has focused on the use of CO2 rich gas streams. This reaction can be considered as a controlled polymerisation and hydrogenation of CO / CO2 to generate liquid fuels. Despite its advantages, F-T catalysis produces simple alkanes and alkenes, not complicated molecules. Carbon chain formation occurs alongside removal of the oxygen atoms, in the form of H2O, reducing complexity and value. F-T does not capitalise on the potential chemical intricacy that could be introduced when combining COx units to form chains. In this project we will develop an entirely new approach to use CO and CO2 in chemical manufacture. We plan to exploit a remarkable recent finding from our labs (JACS, 2018, 13614): that carbon chains of 3 to 4 units of length can be grown from CO and CO2 on organometallic networks. We will develop underpinning science to discover the rules for chain growth. We will deliver new approaches to generate small carbon chains from CO and CO2 with control of size and shape. The new carbon chains will be exploited in synthesis as the major molecular component in the construction of complex organic molecules. The long-term vision behind this project is the development of a modern approach in catalysis that is complementary to both F-T processes and CO2-to-materials research. One that builds molecular complexity from CO and CO2. This proposal describes a three-year project that represents the first steps from discovery toward this goal.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c846a06982985dcecdcdbcd958443bc1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c846a06982985dcecdcdbcd958443bc1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2022Partners:Johnson Matthey Plc, Johnson Matthey (United Kingdom), UCL, Johnson MattheyJohnson Matthey Plc,Johnson Matthey (United Kingdom),UCL,Johnson MattheyFunder: UK Research and Innovation Project Code: EP/R029431/1Funder Contribution: 489,315 GBPHigh End Computing (HEC), or supercomputers, provides exciting opportunities in understanding and increasingly predicting the properties of complex materials through atomistic and electronic structure modelling. The scope and power of our simulations rely on the software we create to match the expanding capabilities provided by the latest development in hardware. Our project will build on the expertise in the UK HEC Materials Chemistry Consortium, to exploit the UK's world-leading supercomputer in a wide-ranging programme of research in the chemistry and physics of functional materials that are used in applications and devices including solar cells, light powerful eco batteries, large flexible electronic displays, self-cleaning and smart windows, improved mobile phones, cheaper and more efficient production of bulk and fine chemicals from detergents to medicines; and thus transforming lives of people and society. The project will develop five themes in applications and three on fundamental aspects of materials, bringing together the best minds of the UK academic community who represent over 25 universities. Close collaboration and scientific interactions between our themes will promote rapid progress and advancement of novel solutions benefiting both applied and fundamental developments. Tuning properties of materials forms the backbone of research in Energy Generation, Storage and Transport, which is a key application theme for UK's economy, which relies heavily on power consumption. We will target the performance of materials used in both batteries and fuel cells; and novel types of solar cells. In Reactivity and Catalysis, we will develop realistic models of several key catalytic systems. Targets include increasing efficiency in industrial processes and more efficient reduction in pollution, including exhaust fumes of petrol or diesel vehicles. New Environmental and Smart Materials will safely store radioactive waste, capture greenhouse gases for long-term storage, filter toxins and pollutants from water, thus improving our environment. This theme will also focus on smart materials used in self cleaning windows, and windows that allow heat from sunlight to enter or be reflected depending on the current temperature of the glass. Research in Soft Matter and Biomaterials will reveal the fundamental processes of biomineralisation, which drives bone repair and bone grafting; with a focus on synthetic bone replacement materials. Soft matter also poses novel and fascinating problems, particularly relating to the properties of colloids, polymers and gels. Materials Discovery will support both screening and global optimisation based approaches to a broad range of materials. Applications include, for example, screening different chemical dopants, which directly affects a targeted physical property of the material, to improve the desired property of a device, and searching the phase diagram for solid phases of a pharmaceutical drug molecule. As different solid phases of a molecule will typical dissolve at different rates, it is extremely important to administer the correct form or a higher/lower dose will result. Fundamental themes cover research in physics and chemistry of matter organised at all scales from Bulk to Surfaces and Interfaces to Low Dimensional Materials (e.g. nanotubes and particles). The challenges are in addressing the morphology, atomic structure and stability of different phases; defects and their effects; material growth, corrosion and dissolution; the structure and behaviour of interfaces. Example applications of nanomaterials include: in suntan lotions, smart windows and pigments, drug delivery, etc. To undertake these difficult and challenging simulations we will need computer software that can accurately model, both reproduce and predict, the materials of interest at the atomic and electronic scale. It is essential that our software is optimised for performance on the latest supercomputers.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8c3ad22020a09501d405820b8192f495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8c3ad22020a09501d405820b8192f495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2025Partners:Johnson Matthey Plc, Johnson Matthey (United Kingdom), UCL, Johnson MattheyJohnson Matthey Plc,Johnson Matthey (United Kingdom),UCL,Johnson MattheyFunder: UK Research and Innovation Project Code: EP/V027611/1Funder Contribution: 415,688 GBPPrinted electronics are becoming integrated into every part of modern-day life, from light-emitting diodes, to solar cells and printed biosensors such as wearable electronics. The flexible electronics market alone is predicted to be valued at $74 billion by 2030. Whilst the technology already exists to manufacture large-scale flexible electronics, by way of the environmentally friendly, roll-to-roll industrial processes which employ inkjet printing, currently the metal inks that are employed have their limitations. The patterning of molten metals is incompatible with affordable flexible materials, including renewable eco-friendly plastics or paper, this mismatch is due to, in part, the high melting point of metals (often over a thousand degrees) and the deformation temperature of a range of plastic, paper or fabric materials being considerably lower (ca. 100 - 200 degrees Celcius). Current techniques used in the production of printed electronics are time consuming and expensive multi step-techniques that require the use of toxic chemicals. These state-of-the-art techniques require metal flakes/particles to be 'melted' together, resulting in contaminants between layers, which reduce overall conductivity of the metal. An obvious solution to this problem is the use of specially designed inks, containing small molecules that can be printed into any desired pattern onto any material, and then be thermally 'activated' at low temperatures, in order to convert them to conductive metal. This project aims to design and synthesise new small molecules in order to improve the performance of existing printing technologies. These would provide a tuneable alternative to the current industrial nanoparticle inks based on silver or copper whose activation temperatures are too high for printing onto many materials. In addition, understanding how the structure of a small molecule can influence its ability to act as a precursor to the metal is challenging, and gaining insight will enable us to adjust thermal activation temperatures, such that after printing, it can yield highly conductive metal. Aluminium metal is earth abundant, boasts conductivity comparable to silver and copper and yet has never been used industrially to inkjet print conductive tracks. This is because suitable precursors do not exist, despite the rich field of synthetic aluminium chemistry. To overcome this problem, we propose to adapt our small molecule design to be better compatible with modern lower temperature deposition techniques. To reap the benefits of using printing techniques for device fabrication inks that will transform at low temperatures (affording compatibility with low cost flexible materials) will be produced. This project will create a library of novel highly performing inks from aluminium which can be printed and sintered in air on low cost flexible materials for incorporation into electronic devices. The aim of this project is to develop new small molecules containing aluminium, formulate these into metal inks and subsequently print highly conductive metal features onto low cost flexible materials for use in electronic devices.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::15da68e51d062485bf2d8de5b4bfad50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::15da68e51d062485bf2d8de5b4bfad50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2023Partners:Swansea University, Johnson Matthey Plc, Swansea University, Johnson Matthey (United Kingdom), Johnson MattheySwansea University,Johnson Matthey Plc,Swansea University,Johnson Matthey (United Kingdom),Johnson MattheyFunder: UK Research and Innovation Project Code: EP/V014994/1Funder Contribution: 297,625 GBPSince the commercial introduction of lithium-ion batteries (LIBs) by Sony in the early 1990s, LIBs become preferred power sources in portable electronics due to their high energy density. LIBs are being slowly introduced in the electric vehicles (EVs) and for grid storage applications. These high energy density LIBs use cobalt or nickel-rich layered cathode materials, which pose several issues. To meet the growing demands, high energy, sustainable, and safe battery technologies that are beyond LIBs are urgently required. Fluoride-ion batteries (FIBs) offer a potential next-generation electrochemical energy storage device that has a higher energy density and safety when compared with state-of-the-art LIBs. Upon realization of its full potential, FIBs would transform the automotive sector and other energy storage sectors beyond LIBs. Currently, FIBs are operated at high temperatures limited by the use of low fluoride-ion conducting solid electrolytes. The development of suitable liquid electrolytes has the potential to bring out the hidden potential of rechargeable fluoride-ion batteries. Controlling the reactivity of fluoride in solution is vital to develop non-aqueous liquid electrolytes. Earlier electron-deficient boron complexes were used to bind the fluoride ions and control its reactivity. However, boron-based molecules bind fluoride ions too strongly and will not release the fluoride ions to the electrodes in electrochemical cells; therefore, these complexes are not suitable for electrolytic applications. A series of organic molecules have identified that control the reactivity of the fluoride ions in solution, and at the same time, they would release the fluoride ions to the electrode in electrochemical cells (predicted based on the binding energy). Such molecules will enable the development of advanced liquid electrolytes for FIBs. In an alternative approach, the PI has also proposed to develop new 'quasi non-aqueous' fluoride transporting liquid electrolytes. These two types of liquid electrolytes will be used to build and investigate FIBs with various metal/metal fluoride combinations. The main objectives of the project are to develop suitable fluoride-ion-transporting non-aqueous and quasi-non-aqueous liquid electrolytes and to ensure that fluoride ion batteries perform under room temperature with high energy and safety. Potential applications and benefit: The primary outcome of the project will enable the rapid development of room temperature FIBs and will pave the way for the realisation of high energy rechargeable FIBs with applications in portable electronics, grid, and EVs.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7b574ecbff8be3daf9fb054295770209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7b574ecbff8be3daf9fb054295770209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2016Partners:Johnson Matthey Plc, University of Birmingham, Johnson Matthey (United Kingdom), Johnson Matthey, University of BirminghamJohnson Matthey Plc,University of Birmingham,Johnson Matthey (United Kingdom),Johnson Matthey,University of BirminghamFunder: UK Research and Innovation Project Code: EP/L014114/1Funder Contribution: 494,174 GBPMany inherent problems need to be overcome if we are to approach an energy framework that is both clean and sustainable. Although progress is being made, it is likely that solutions will rely on new concepts in the design of materials rather than improvements to existing materials. This view provides the rationale behind the proposed research: based on preliminary exciting findings, we will extend our studies of a class of materials with unique structural features that have never been fully exploited - nor even fully explored. The research focuses on a mineral, schafarzikite, and our preliminary studies have been directed towards introducing functionality to provide useful properties. This proposal emanates from two highly exciting findings: 1) we have been able to insert anions into channels within the schafarzikite framework; 2) we have discovered a schafarzikite material that contains a low-dimensional copper oxide framework that is ferromagnetic. The first discovery suggests that this structure could make an important contribution to aspects of energy storage, both for new electrode materials and new electrolytes. It is our objective to characterise fully these new materials and screen them for use as advanced materials in these areas. This programme, and possible subsequent commercialisation, will be assisted by a collaboration with Johnson Matthey. The second research finding is of academic interest because ferromagnetic oxides are quite rare. However, added interest attaches to the fact that low dimensional copper oxides provided the basis for the High-Tc superoconducting materials that superconduct at temperatures up to 133 K. However, all these materials have antiferromagnetic parent phases, and this antiferromagnetism is likely to be inportant in the superconductivity mechanism. The chemical manipulation of this particular material to introduce electronic conductivity is therefore a major objective of the programme. We are not aware of any studies that relate to elecronic conduction in copper oxide materials with an inherent ferromagnetic ground state. Materials with the perovskite structure have been studied extensively and their properties have resulted in applications in many areas, including electrodes and electrolytes in electrochemical devices. Although structurally very different from perovskites, functionalising their properties is conceptually similar to that which can be achieved for the perovskite system: cation substitutions at one site can be used to tune the functional properties at the other. However, there has been very little previous research that has focused on this structure. We will therefore be vigilant to recognise other new features that are likely to become apparent during the programme but are not included in the specific targets above. The synthetic aspects of the programme of work will be informed by predictions of suitable chemical targets that have been determined by theoretical calculations relating to the stabilities of possible chemical compositions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::082828eaacf70200dcd03dad0cc02b9d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::082828eaacf70200dcd03dad0cc02b9d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right