
SPECIFIC Innovation and Knowledge Ctr
SPECIFIC Innovation and Knowledge Ctr
9 Projects, page 1 of 2
assignment_turned_in Project2021 - 2024Partners:SPECIFIC Innovation and Knowledge Ctr, G Lyte, SPECIFIC (Innovation and Knowledge Ctr), brains4design, G Lyte +4 partnersSPECIFIC Innovation and Knowledge Ctr,G Lyte,SPECIFIC (Innovation and Knowledge Ctr),brains4design,G Lyte,Newcastle University,brains4design,Newcastle University,Swansea UniversityFunder: UK Research and Innovation Project Code: EP/V035819/1Funder Contribution: 330,992 GBPIntelligent wireless devices are rapidly evolving into indispensable assistants in numerous facets of our world. Merged with machine learning, wireless sensor networks are poised to advance the interchange of information in smart homes, offices, cities and factories. By 2030, an estimated 30 billion IoT (Internet of Things) devices are expected to be installed, the vast majority of which are to be placed indoors or in diffuse light conditions. IoT devices and wireless sensor nodes (WSN) will need to harvest energy from the environment for long-term deployment and operation. Indoor photovoltaic cells have the potential to provide the required energy. The power needed to operate these devices continues to decrease, while conversion efficiencies and hence the power output of indoor photovoltaic (IPV) cells is rapidly increasing. When located indoors with no access to solar irradiance, IPV cells harvest the energy emitted by artificial light sources, with the illumination intensity typically several orders of magnitude less than sunlight. Dye-sensitized IPV cells have shown considerable progress in terms of light to electricity conversion efficiency of late, with values over 30% measured under 200-1,000~lux light intensity. The collection of ambient light offers vast universally available energy, which can be used to design near-perpetual smart IoT devices. I have already developed the most efficient ambient light photovoltaic technology allowing one to implement artificial intelligence and image classification on self-powered IoT devices. In this proposal, I introduce a new design and energy paradigm to IoT devices, to maximize their ability to sense, communicate, and predict, powered by a dual-function device, an Energy-Storable Dye-sensitized Solar cell (ES-DSC). This device is a combination of energy harvester (Indoor Photovoltaic) and energy storage (a chemical supercapacitor). The chemical supercapacitor, a device that stores electrical energy in molecules, is based on organic redox materials, which are not only very efficient, but also sustainable and non-toxic. The intermittent character of the energy generation in IPVs will be bridged with the use of chemical supercapacitors to enable the overall IoT device to intermittently bridge periods of darkness for continuous operation. The proposed research focuses on innovating and implementing charge storing electrodes. I will focus on polyviologens, which have the ideal properties for IPV cells, are sustainable for electrical storage, and have not yet been applied in these emerging technologies. Funding from EPSRC will enable me to translate the favourable properties of polyviologens, firstly, by exploiting the high volumetric capacity of chemical supercapacitors to improve the performance, durability, and functionality of photovoltaic devices. Secondly, I will manipulate the backbone of the polymers to maximise the amount of charge that can be stored within the materials. Consequently, I will be able to fulfil my ambition of developing a new system that uses organic molecules, polyviologens, to integrate energy storage capabilities into solar cells to produce a single device capable of continuously powering electronic equipment during the day and at night. Success in this project will enable high efficiency light harvesting devices to be assembled at low-cost using roll-to-roll assembly, which would have enormous potential for societal and economic impact, including national and local jobs, supply chains, skills, and in reducing carbon emissions and fuel poverty.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1e0215bc5dfdc64a65680547ff627044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1e0215bc5dfdc64a65680547ff627044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2025Partners:SPECIFIC Innovation and Knowledge Ctr, University of Bath, First Graphene (UK) Ltd, Swansea University, University of Birmingham +4 partnersSPECIFIC Innovation and Knowledge Ctr,University of Bath,First Graphene (UK) Ltd,Swansea University,University of Birmingham,University of Bath,SPECIFIC (Innovation and Knowledge Ctr),First Graphene (UK) Ltd,University of BirminghamFunder: UK Research and Innovation Project Code: EP/W010828/1Funder Contribution: 318,434 GBPSpace heating currently accounts for 25% of the UK's energy consumption and 17% of its carbon emissions. The effective and efficient recovery, storage, and reuse of waste heat, together with renewable energy, play indispensable roles in decarbonisation of heating in buildings. The thermochemical energy storage materials possess the highest volumetric energy density comparing to phase change and sensible heat storage materials. However, the design and manufacture of thermochemical energy storage materials are still facing the challenges of high cost, low sustainability, and limited heating power. There also lacks fundamental understandings of the properties of materials that control the cyclic energy storage performances and structural stabilities. These have brought significant challenges to optimisation and implementation of the thermochemical energy storage techniques for domestic application. This project adopts novel research approaches for civil engineering materials to tackle these standing challenges faced by developing thermochemical energy storage materials. Versatile high-performance heat battery materials will be developed from sustainable low-cost civil engineering material geopolymers. Lightweight geopolymer composite materials with enhanced heat and mass transport properties and thermochemical energy storage capacity will be developed through green synthesis routes. The first structural stability assessment model for predicting the service cycle life of heat battery materials will be proposed from the extended chemo-mechanical salt damage model for inorganic porous building materials. The materials fabrication technology and fundamental understanding of the degradation mechanism developed in this project will be transferable to versatile "salt-in-matrix" TCES composites. The outcomes developed from this project will drastically improve the sustainability and resilience of thermal energy storage technologies, for decarbonisation of heating in existing and new-built buildings.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::aee2e18406547d2be6f144764634f72b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::aee2e18406547d2be6f144764634f72b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2018Partners:NSG Holding (Europe) Limited, Johnson Matthey, Swansea University, NSG Group (UK), University of Bristol +5 partnersNSG Holding (Europe) Limited,Johnson Matthey,Swansea University,NSG Group (UK),University of Bristol,University of Bristol,SPECIFIC (Innovation and Knowledge Ctr),Johnson Matthey Plc,Johnson Matthey (United Kingdom),SPECIFIC Innovation and Knowledge CtrFunder: UK Research and Innovation Project Code: EP/L017792/1Funder Contribution: 2,012,700 GBPTo meet teraWatt photovoltaic (PV) capacity targets for 2050, solar modules will require: 1. Low manufacturing costs and carbon footprint as well as short energy payback time 2. To be incorporated into building-integrated systems 3. To be based on low-cost abundant elements Current thin-film PV technologies based on copper indium gallium diselenide (CIGS) and cadmium telluride (CdTe) have already demonstrated their potential to deliver on the first two requirements. These technologies are currently manufactured at the GW scale, with approximately 10% of the PV market worldwide. However, low abundance, high costs and high toxicity of key elements (In, Ga and Cd) present in active layers are set to severely limit the expansion of this technology in the next decades. Consequently, material substitution and the development of scalable (non-vacuum) processing technologies represent an extraordinary opportunity for the UK to grab an important share of the global photovoltaic market. The aim of PVTEAM is to lay the foundations of sustainable thin-film PV technology based on Earth abundant materials and scalable manufacturing processes. This will be achieved by developing processes and production technologies for materials and material systems to a level they can be taken up by manufacturing industries. This programme covers material specifications and performance, integration into cells and mini-modules as well as developing the technologies required for scale up. PVTEAM will specify a carefully selected range of binary, ternary and quaternary chalcogenides and oxides as substitutes to proven commercial materials. Using a multi-level screening approach, we will incorporate the best performing candidates into industrial processes based on "substrate" and "superstrate" configurations. The consortium involves five universities with state-of-the-art infrastructure for material development and characterisation as well as for device fabrication, testing and integration into PV modules. Material processing will be based on facilities available at the Sustainable Product Engineering Centre (SPECIFIC), which will be in charge of designing scale-up strategies and preparing techno-economic assessment. The PVTEAM industrial partners, Tata Steel, Pilkington NSG and Johnson Matthey, have a worldwide footprint on materials for the construction, coating and chemical industries. The consortium also includes SMEs, M-Solve and Semimetrics, which will provide means for the exploitation of new PVTEAM technologies in module fabrication and metrology.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::77c14675dc7184111c54069683ed24f1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::77c14675dc7184111c54069683ed24f1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2019Partners:[no title available], Sofintsys, SFI, Swansea University, University of Sheffield +23 partners[no title available],Sofintsys,SFI,Swansea University,University of Sheffield,Idaho National Laboratory,National Grid PLC,Deloitte LLP,NPL,Deloitte (United Kingdom),Met Office,SPECIFIC (Innovation and Knowledge Ctr),Fujitsu,University of Sheffield,Met Office,INL,National Physical Laboratory,SPECIFIC Innovation and Knowledge Ctr,Department for Business, Energy and Industrial Strategy,MET OFFICE,Department of Energy and Climate Change,National Instruments (United States),National instruments,DECC,National Grid (United Kingdom),Fujitsu,Fujitsu (United Kingdom),SofintsysFunder: UK Research and Innovation Project Code: EP/N010019/1Funder Contribution: 502,347 GBPOur society is increasingly reliant upon engineered systems of unprecedented and growing complexity. As our manufacturing and service industries, and the products that they deliver, continue to complexify and interact, and we continue to extend and integrate our physical and digital infrastructure, we are becoming increasingly vulnerable to the cascading and escalating effects of failure in highly complex and evolving systems of systems. Consequently, it is becoming increasingly critical that we are able to understand and manage the risk and uncertainty in Complex Engineering Systems (CES) to provide reliant and optimal design and control solutions. Research on natural complex systems is helping us to understand the implications of inter-dependencies within and between complex adaptive systems. However, unlike natural ecosystems, which may become more robust through diversifying, man-made complex systems tend to become more fragile as their complexity increases. If we are to deal with the challenge presented by complex engineered systems, we will need to exploit and synthesise our current understanding of natural and engineered systems, our current theories of complexity more generally. The ENgineering COmplexity REsilience Network Plus (hereafter called ENCORE) addresses the Grand Challenge area of Risk and Resilience in CES. Our vision is to identify, develop and disseminate new methods to improve the resilience and sustainable long-term performance of complex engineered systems, initially including Cities and National Infrastructure, ICT and Energy Infrastructure, Complex Products: Aerospace (both Jet Engines and Space Launch and Recovery Systems) and later to explore the inclusion of Nuclear Submarines, Power Stations and Battlefield Systems. We have chosen these particular CES domains as they strike a balance between the challenges and opportunities that the UK faces for which complexity science can have a significant impact for our citizens and businesses whilst spanning sufficiently diverse fields to present cross-domain learning opportunities. Our approach is to create shared learning from [1] the manner in which naturally complex systems cope with risk and uncertainty to deliver resilience (ecosystems, climate, finance, physiology, etc.) and how such strategies can be adapted for engineering systems; [2] how the tools and concepts of complexity science can contribute towards developing a greater understanding of risk, uncertainty and resilience, and [3] distilling world-class activity within individual CES domains to provide new insights for the design and management of other engineering systems. Examples of the potential for the application of this field and which will be considered for inclusion in the feasibility studies include: - Predicting equipment failures and their consequences in critical infrastructure systems; - Developing a management heuristic that plays the same role as a "risk register", but addresses systemic resilience; - Optimising the deployment of instrumentation required to manage cities and other CES effectively; - Increasing the resilience of interdependent digital systems; - Advancing models of cascading failure on networks such that they take account of node heterogeneity and in particular the different failure/recovery modes of different types of node. - Improving the number of contexts in which CES can be deployed with replicable performance; - Decreasing the likelihood of human behavioural errors in operating CES. - Identifying the critical elements that constrain/define system performance most strongly; - Extending system lifetimes and functionality; - Mapping the relationship between complex system complexity and fragility; - Characterising uncertainty and defining the inference process to transition from one phase to the other in the control of CES and in complex decision making processes.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cfbfffe58e9c296145fc5db10fa8252c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cfbfffe58e9c296145fc5db10fa8252c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2023Partners:BASF Coatings Ltd, Nthdegree Technologies, Tata Steel (United Kingdom), OE Innovation Ltd, NSG Group (UK) +31 partnersBASF Coatings Ltd,Nthdegree Technologies,Tata Steel (United Kingdom),OE Innovation Ltd,NSG Group (UK),DST Innovations Ltd,Swansea University,Tata Steel (United Kingdom),Tata Steel UK,Royal Mint (The),Sun Chemical,LUX-TSI,SPECIFIC (Innovation and Knowledge Ctr),EM Coatings,Mid Sweden University,SPECIFIC Innovation and Knowledge Ctr,EM Coatings,BASF PLC,Tata Group UK,BECKERS UK,SABMILLER PLC,Beckers Group (UK),Tata Steel UK,LUX-TSI,Nthdegree Technologies,Swansea University,SABMiller plc,Fleet Innovations Ltd,Royal Mint (The),Sun Chemical,OE Innovation Ltd,NSG Holding (Europe) Limited,Sun Chemical (United Kingdom),Swansea University,Imperial College London,Mid Sweden UniversityFunder: UK Research and Innovation Project Code: EP/L015099/1Funder Contribution: 2,695,470 GBPThe EPSRC Centre for Doctoral Training in Industrial Functional Coatings: COATED2 will extend and enhance doctoral training provision provided by the current EPSRC CDT COATED. This new CDT will provide 40 EngD research engineers (REs) over 4 cohorts beginning in 2015 to provide critical support to the EPSRC/TSB funded SPECIFIC Innovation and Knowledge Centre (IKC) hosted by Swansea University. The main aim of SPECIFIC is to rapidly develop and up-scale functional coated materials on steel and glass that generate, store and release energy creating buildings as power stations. In the UK more than 4billion m2 of roofs and facades could be used to harvest solar energy. SPECIFIC's vision is to use such surfaces to generate up to one 1/3 of the UK's target renewable energy by the 2020s. This is based on using 20million m2 by 2020, less than 0.5% of the available area. Development of such coatings will lead to an enhancement of value in current manufacturers and the evolution of new industries generating wealth and jobs in the UK. This CDT will furnish these evolving industries with highly skilled graduates whilst providing leaders of industry to existing manufacturers and substrate producers. SPECIFIC supported by COATED REs has made rapid progress and a pilot production line has been established at the IKC opened by Vince Cable MP and Welsh First Minister Carwyn Jones in 2012. The input of current REs into the IKC has led to 2 potential commercial products and 8 patents during the first 2 years of operation. The pilot line provides dedicated up-scaling capabilities to take technologies from lab to production in a matter of days or weeks rather than years. As such, these world-class facilities provide a dynamic environment for the development, up scaling and production of innovative functional coated products and the CDT therefore fulfills the EPSRC priority area of complex manufactured products. Not only this but the technical focus of products researched and up-scaled in the CDT will support other priority themes including solar, energy storage, functional materials and sustainable use of materials and thus provides a rapid route through Technology Readiness Levels (TRLs) 1-6 for a number of critical future technologies. The COATED2 programme will continue to provide research and training in the area of functional coatings that will underpin the research and scale-up activities occurring at SPECIFIC. The brief of the CDT will be enhanced to support the new EPSRC Centre for Innovative Manufacturing (CIM) in Large Area Electronics of which the Welsh Centre for Printing and Coating (WCPC) at Swansea University is a key partner. The WCPC activities are critical to both SPECIFIC and the CIM as the development of large scale printing process are key for the production of the functional coatings technologies developed at SPECIFIC. Thus, REs will directly support activities that will influence both large-scale EPSRC projects. Further enhancement will come in the form of research aligned with Imperial College London (ICL) as a number of collaborative projects are active with ICL linked to Plastic Electronics and their CDT in this field through SPECIFIC and the WCPC. The strategic working partnership between Swansea and partner universities will be strengthened in 2013 by a £6.6million Welsh Government investment in a Solar Energy Futures Lab bringing leading ICL and Oxford University scientists to the IKC to support the science behind innovation for the full period of the COATED2 CDT. This will provide COATED2 REs with access to these scientists and benefit from the synergy of complementary projects supported through each University/CDT with cross fertilisation through the IKC. This activity of RE support for the IKC and CIM with cluster projects involving partner institutions provides a flourishing and vibrant research environment with world class facilities on hand to facilitate research and success.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2fe19abae457e2bb139109fc80602b1f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2fe19abae457e2bb139109fc80602b1f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right