Powered by OpenAIRE graph
Found an issue? Give us feedback

Ellen MacArthur Foundation

Ellen MacArthur Foundation

9 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/R032041/2
    Funder Contribution: 727,934 GBP

    Circular approaches to design, manufacture and services are proposed as one of the most significant opportunities to radically re-think how we use and re-use finite resources. Pairing the digital revolution with the principles of a Circular Economy (CE) has the potential to radically transform the industrial landscape and its relationship to materials and finite resources, thus unlocking additional value for the manufacturing sector. Despite meaningful success by a handful of manufacturers to move towards more sustainable practices through the use of data-driven intelligence, it is unclear which CE strategy is the most valuable for a business and at what time in a products lifecycle it should be implemented. As such, this research aims to identify how data from products in use can inform intelligent decisions surrounding the implementation of Circular Economy strategies so as to accelerate the implementation of circular approaches to resource use within UK manufacturing. Multiple research efforts and best practice examples have shown that a transition towards a Circular Economy can bring about lasting benefits from a more innovative, resilient and productive economy. This is particularly prevalent for manufacturing as it offers one of the biggest potentials for economic and environmental impact of any sector. It is estimated that materials savings alone in the European Union could amount to USD 630 billion. Digital technology is rapidly becoming a key enabler for unlocking the value from Circular Economy strategies with an estimated 10 billion physical objects with embedded information technology already in existence today and a predicted 50 billion in use by 2020. For the manufacturing sector, the ability to monitor and manage objects in the physical world electronically through data-driven decision-making changes the way that value is created. The capture and analysis of data streams between manufacturing, product and user is already enabling organisations to decouple manufacturing growth from resource consumption through new service offerings, providing customers with added value such as financial savings and safety improvement, and enabling organisations to shift their business model from selling to leasing. This shift in ownership, enabled through access to the right data, brings about a need for manufacturers to design products that last and to integrate processes such as remanufacturing to enable materials and resources to be cycled as many times as possible resulting in significant environmental savings, job creation and up-skilling associated with the development of new processes. Through harnessing digital technological advances to inform decisions on Circular Economy strategies, this research has the opportunity to radically transform UK manufacturing and enable the sector to capture significant value from a Circular Economy that is currently being lost. The originality of this research lies in using data-driven intelligence to optimise the selection of CE strategies for products and the timings of intervention in the product lifecycle. This challenging three year project will bring together an internationally renowned team of experts in Circular Innovation, Manufacturing Informatics and Information Theory from Cranfield University and University of Sheffield drawing on leading-edge strengths of the host institutions and international connections with research communities, companies, business intermediaries and governance at national and international scales. The research team will partner with key players across the manufacturing sector, capable of initiating system level change, to develop novel methods for acquiring and integrating new data streams, uncovering exciting opportunities for new value creation within manufacturing organisations and enabling informed circular interventions surrounding the manufacture and use of products.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Z533439/1
    Funder Contribution: 2,093,150 GBP

    The Digital Innovation and Circular Economy (DICE) Network+ aims to drive a transformative shift in the sustainability and circularity of digital and communication technologies. Our vision leverages the digital revolution to foster a circular economy across sectors and value chains, adopting a "network of networks" approach for interdisciplinary collaboration, research, and technological innovation. DICE focuses on overcoming challenges such as the lack of circular economy principles in digital technology design and manufacture, and the poor understanding and coordination of digital advancements in supporting the transition towards a UK circular economy. Our network comprises 11 investigators, from engineering, materials science and social sciences and a wide range of partners, including universities, industry stakeholders, and public bodies. It aims to benefit stakeholders through the co-creation of innovative solutions, fostering knowledge exchange, supporting projects that promote digitally enabled circular economy adoption and guidance on future policy making and industrial decision making. The approach centres around interdisciplinary collaboration, leveraging our extensive existing networks (over £160m of funding since 2020) for maximum impact, and a structured programme of network engagement under the four pillars of Insight and Evidence, Inclusive Community, Capacity Building and Knowledge Exchange, and Research Impact and Legacy. DICE's activities include mapping exercises, webinars, annual showcases, co-creation workshops, knowledge exchange placements, feasibility studies, and demonstrator projects, culminating in the development of a 10-year vision and roadmap towards a digitally enabled CE to guide future policy making, industrial decision making, investment and technological development.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R032041/1
    Funder Contribution: 775,606 GBP

    Circular approaches to design, manufacture and services are proposed as one of the most significant opportunities to radically re-think how we use and re-use finite resources. Pairing the digital revolution with the principles of a Circular Economy (CE) has the potential to radically transform the industrial landscape and its relationship to materials and finite resources, thus unlocking additional value for the manufacturing sector. Despite meaningful success by a handful of manufacturers to move towards more sustainable practices through the use of data-driven intelligence, it is unclear which CE strategy is the most valuable for a business and at what time in a products lifecycle it should be implemented. As such, this research aims to identify how data from products in use can inform intelligent decisions surrounding the implementation of Circular Economy strategies so as to accelerate the implementation of circular approaches to resource use within UK manufacturing. Multiple research efforts and best practice examples have shown that a transition towards a Circular Economy can bring about lasting benefits from a more innovative, resilient and productive economy. This is particularly prevalent for manufacturing as it offers one of the biggest potentials for economic and environmental impact of any sector. It is estimated that materials savings alone in the European Union could amount to USD 630 billion. Digital technology is rapidly becoming a key enabler for unlocking the value from Circular Economy strategies with an estimated 10 billion physical objects with embedded information technology already in existence today and a predicted 50 billion in use by 2020. For the manufacturing sector, the ability to monitor and manage objects in the physical world electronically through data-driven decision-making changes the way that value is created. The capture and analysis of data streams between manufacturing, product and user is already enabling organisations to decouple manufacturing growth from resource consumption through new service offerings, providing customers with added value such as financial savings and safety improvement, and enabling organisations to shift their business model from selling to leasing. This shift in ownership, enabled through access to the right data, brings about a need for manufacturers to design products that last and to integrate processes such as remanufacturing to enable materials and resources to be cycled as many times as possible resulting in significant environmental savings, job creation and up-skilling associated with the development of new processes. Through harnessing digital technological advances to inform decisions on Circular Economy strategies, this research has the opportunity to radically transform UK manufacturing and enable the sector to capture significant value from a Circular Economy that is currently being lost. The originality of this research lies in using data-driven intelligence to optimise the selection of CE strategies for products and the timings of intervention in the product lifecycle. This challenging three year project will bring together an internationally renowned team of experts in Circular Innovation, Manufacturing Informatics and Information Theory from Cranfield University and University of Sheffield drawing on leading-edge strengths of the host institutions and international connections with research communities, companies, business intermediaries and governance at national and international scales. The research team will partner with key players across the manufacturing sector, capable of initiating system level change, to develop novel methods for acquiring and integrating new data streams, uncovering exciting opportunities for new value creation within manufacturing organisations and enabling informed circular interventions surrounding the manufacture and use of products.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R020957/1
    Funder Contribution: 2,206,900 GBP

    The development of future real-world technologies will be dependent on our ability to understand and harness the underlying principles of living systems, and to direct communication between biological parts and man-made materials. Recent advances in DNA synthesis, sequencing and ultra-sensitive analytical techniques amongst others, have reignited interest in extending the repertoire of functional materials by interfacing them with components derived from biology, blurring the boundary between the living and non-living world. These bio-hybrid systems hold great promise for use in a range of application areas including, for example, the sensing of toxins or pollutants in our environment, diagnosing life-threatening ilnesses in humans and animals, or delivering drugs to specific locations within patients bodies to treat a range of diseases, e.g. cancer. During this project we propose to develop innovative manufacturing methods to enable the reliable and scaleable production of evolvable bio-hybrid systems that possess the inherent ability to sense and repair damage, so-called 'immortal' products. This will ultimately lead to the development of products and devices that can continue to function without needing repair or replacement over the course of their life. For example, imagine a mobile phone that can self-repair its own screen after being dropped, or a circuit board in a laptop computer that can repair itself after being short-circuited. The outputs of this project have the potential to provide solutions to some of our greatest societal challenges and by doing so to reinvigorate the UK manufacturing industry by establishing it as a world leader in the production of self-healing systems. We propose to focus our efforts on three specific application areas. These are: 1. Electrochemical energy devices, e.g. fuel cells and batteries that are needed to power our everyday lives, from mobile phones to electric cars. 2. Consumer electronics, which underpin many of the core technologies that we encounter and use on a day-to-day basis, e.g. computers or televisions. 3. Safety critical systems that are used in the nuclear industry and deep sea technologies, e.g. deep sea cables that can withstand many years of use without needing to be replaced.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P008917/2
    Funder Contribution: 921,629 GBP

    In a circular economy value is created by keeping products and materials 'in flow' through effective recirculation and re-use to optimise their highest economic potential and minimise the use of virgin materials and external environmental costs. New construction and existing building stocks present the highest potential for circular economy innovation, value retention and creation opportunities, estimated to be worth approximately Euro 450 - 600M p.a. Innovation in the reclamation of currently hard to re-use building products - concrete, steel, brick, from end of service life (EOSL) buildings and their remanufacture into new modular products for new builds which would then be designed for future deconstruction, is therefore a major economic opportunity. REBUILD proposes that materials are directly reused and remanufactured into new builds with minimal re-processing. The project proposes a new circular economy system to address key barriers in the current linear approaches to demolition and new building construction, and build capabilities and tools to create significant new value by the early adoption of novel technologies, high value remanufacture, new system arrangements and the scaling up good practices. The magnitude of the opportunity is considerable. Existing buildings were not designed for adaptation, dis-assembly, or high value reuse. Therefore, the current option is to demolish them when they reach EOSL. In the UK approximately 50,000 buildings are demolished each year generating 45Mt of wastes, the majority of this is concrete and masonry, brick and steel. Of this 45Mt, only a small percentage is reclaimed, mostly for heritage products or easily demountable structures such as steel sections from portal frames. EOSL buildings are treated as costs to be minimised with speed of clearance commercially critical and a subsequent major loss of embedded carbon, energy, materials and potential value. For circularity to become mainstream in the building construction industry, it is imperative that barriers to reuse hard to deconstruct buildings, including using cement mortar based masonry, reinforced concrete, steel-concrete composite structures, which account for the vast majority of UK construction tonnage and cost, must be removed. REBUILD starts the process of converting all current building at the end of their first life and future buildings into material and product banks allowing the retention of high value materials and products for future repeat reuse. The cost of transport and storage means that repair, remanufacture and reuse of products to be commercially successful will need to be regional/local scale. To create demand acceptance for re-used products REBUILD testing processes are designed to demonstrate industry standards of quality assurance of technical performance. Creating demand requires a system re-design and co-ordination to integrate all the activities in the value chain including construction and manufacture, demolition and other key activities (financing, public procurement, planning), in new ways to collaborate to unlock and share value from product re-use. This integration is likely to be optimal at city scale within a circular economy regional hub. This system design will be created and modelled with our industrial stakeholders. The project will quantify, measure and evaluate the magnitude of value creation and product re-use for different system configurations and scenarios against a Business as Usual (BAU) reference case. Continual interactions with the industrial stakeholder group, and through their networks the wider construction industry, will make sure that the direction of our project stays close to industrial needs and the outcomes of our research are communicated to the industry in the most effective way.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.