Powered by OpenAIRE graph
Found an issue? Give us feedback

Toshiba Research Europe Ltd

Toshiba Research Europe Ltd

73 Projects, page 1 of 15
  • Funder: UK Research and Innovation Project Code: EP/S022139/1
    Funder Contribution: 5,695,180 GBP

    This proposal seeks funding to create a Centre for Doctoral Training (CDT) in Connected Electronic and Photonic Systems (CEPS). Photonics has moved from a niche industry to being embedded in the majority of deployed systems, ranging from sensing, biophotonics and advanced manufacturing, through communications from the chip-to-chip to transcontinental scale, to display technologies, bringing higher resolution, lower power operation and enabling new ways of human-machine interaction. These advances have set the scene for a major change in commercialisation activity where electronics photonics and wireless converge in a wide range of information, sensing, communications, manufacturing and personal healthcare systems. Currently manufactured systems are realised by combining separately developed photonics, electronic and wireless components. This approach is labour intensive and requires many electrical interconnects as well as optical alignment on the micron scale. Devices are optimised separately and then brought together to meet systems specifications. Such an approach, although it has delivered remarkable results, not least the communications systems upon which the internet depends, limits the benefits that could come from systems-led design and the development of technologies for seamless integration of electronic photonics and wireless systems. To realise such connected systems requires researchers who have not only deep understanding of their specialist area, but also an excellent understanding across the fields of electronic photonics and wireless hardware and software. This proposal seeks to meet this important need, building upon the uniqueness and extent of the UCL and Cambridge research, where research activities are already focussing on higher levels of electronic, photonic and wireless integration; the convergence of wireless and optical communication systems; combined quantum and classical communication systems; the application of THz and optical low-latency connections in data centres; techniques for the low-cost roll-out of optical fibre to replace the copper network; the substitution of many conventional lighting products with photonic light sources and extensive application of photonics in medical diagnostics and personalised medicine. Many of these activities will increasingly rely on more advanced systems integration, and so the proposed CDT includes experts in electronic circuits, wireless systems and software. By drawing these complementary activities together, and building upon initial work towards this goal carried out within our previously funded CDT in Integrated Photonic and Electronic Systems, it is proposed to develop an advanced training programme to equip the next generation of very high calibre doctoral students with the required technical expertise, responsible innovation (RI), commercial and business skills to enable the £90 billion annual turnover UK electronics and photonics industry to create the closely integrated systems of the future. The CEPS CDT will provide a wide range of methods for learning for research students, well beyond that conventionally available, so that they can gain the required skills. In addition to conventional lectures and seminars, for example, there will be bespoke experimental coursework activities, reading clubs, roadmapping activities, responsible innovation (RI) studies, secondments to companies and other research laboratories and business planning courses. Connecting electronic and photonic systems is likely to expand the range of applications into which these technologies are deployed in other key sectors of the economy, such as industrial manufacturing, consumer electronics, data processing, defence, energy, engineering, security and medicine. As a result, a key feature of the CDT will be a developed awareness in its student cohorts of the breadth of opportunity available and the confidence that they can make strong impact thereon.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L016524/1
    Funder Contribution: 4,208,660 GBP

    Recently, an influential American business magazine, Forbes, chose Quantum Engineering as one of its top 10 majors (degree programmes) for 2022. According to Forbes magazine (September 2012): "a need is going to arise for specialists capable of taking advantage of quantum mechanical effects in electronics and other products." We propose to renew the CDT in Controlled Quantum Dynamics (CQD) to continue its success in training students to develop quantum technologies in a collaborative manner between experiment and theory and across disciplines. With the ever growing demand for compactness, controllability and accuracy, the size of opto-electronic devices in particular, and electronic devices in general, is approaching the realm where only fully quantum mechanical theory can explain the fluctuations in (and limitations of) these devices. Pushing the frontiers of the 'very small' and 'very fast' looks set to bring about a revolution in our understanding of many fundamental processes in e.g. physics, chemistry and even biology with widespread applications. Although the fundamental basis of quantum theory remains intact, more recent theoretical and experimental developments have led researchers to use the laws of quantum mechanics in new and exciting ways - allowing the manipulation of matter on the atomic scale for hitherto undreamt of applications. This field not only holds the promise of addressing the issue of quantum fluctuations but of turning the quantum behaviour of nano- structures to our advantage. Indeed, the continued development of high-technology is crucial and we are convinced that our proposed CDT can play an important role. When a new field emerges a key challenge in meeting the current and future demands of industry is appropriate training, which is what we propose to achieve in this CDT. The UK plays a leading role in the theory and experimental development of CQD and Imperial College is a centre of excellence within this context. The team involved in the proposed CDT covers a wide range of key activities from theory to experiment. Collectively we have an outstanding track record in research, training of postgraduate students and teaching. The aim of the proposed CDT is to provide a coherent training environment bringing together PhD students from a wide variety of backgrounds and giving them an appreciation of experiment and theory of related fields under the umbrella of CQD. Students graduating from our programme will subsequently find themselves in high-demand both by industry and academia. The proposed CDT addresses the EPSRC strategic area 'Quantum Information Processing and Quantum Optics" and one of the priority areas of the CDT call, "Towards Quantum Technologies". The excellence of our doctoral training has been recognised by the award of a highly competitive EU Innovative Doctoral Programme (IDP) in Frontiers of Quantum Technology, which will start in October 2013 running for four years with the budget around 3.8 million euros. The new CDT will closely work with the IDP to maximise synergy. It is clear that other high-profile activities within the general area of CQD are being undertaken in a range of other UK universities and within Imperial College. A key aim of our DTC is inclusivity. We operate a model whereby academics from outside of Imperial College can act as co-supervisors for PhD students on collaborative projects whereby the student spends part of the PhD at the partner institution whilst remaining closely tied to Imperial College and the student cohort. Many of the CDT activities including lectures and summer schools will be open to other PhD students within the UK. Outreach and transferable skills courses will be emphasised to provide a set of outreach classes and to organise various outreach activities including the CDT in CQD Quantum Show to the general public and CDT Festivals and to participate in Imperial's Science Festivals.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N031776/1
    Funder Contribution: 5,638,690 GBP

    We seek to exploit the highly advantageous properties of III-V semiconductors to achieve agenda setting advances in the quantum science and technology of solid state materials. We work in the regime of next generation quantum effects such as superposition and entanglement, where III-V systems have many favourable attributes, including strong interaction with light, picosecond control times, and microsecond coherence times before the electron wavefunction is disturbed by the environment. We employ the principles of nano-photonic design to access new regimes of physics and potential long term applications. Many of these opportunities have only opened up in the last few years, due to conceptual and fabrication advances. The conceptual advances include the realisation that quantum emitters emit only in one direction if precisely positioned in an optical field, that wavepackets which propagate without scattering may be achieved by specific design of lattices, and that non-linearities are achievable at the level of one photon and that quantum blockade can be realised where one particle blocks the passage of a second. The time is now right to exploit these conceptual advances. We combine this with fabrication advances which allow for example reconfigurable devices to be realised, with on-chip control of electronic and photonic properties. We take advantage of the highly developed III-V fabrication technology, which underpins most present day solid-state light emitters, to achieve a variety of chip-based quantum physics and device demonstrations. Our headline goals include reconfigurable devices at the single photon level, a single photon logic gate based on the fully confined states in quantum dots positioned precisely in nano-photonic structures, and coupling of states by designed optical fields, taking advantage of the reconfigurable capability, to enhance or suppress optical processes. Quantum dots also have favourable spin (magnetic moments associated with electrons) properties. We plan to achieve spins connected together by photons in an on-chip geometry, a route towards a quantum network, and long term quantum computer applications. As well as quantum dots, III-V quantum wells interact strongly with light to form new particles termed polaritons. We propose to open the new field of topological polaritonics, where the nano-photonic design of lattices leads to states which are protected from scattering and where artificial magnetic fields are generated. This opens the way to new coupled states of matter which mimic the quantised Hall effects, but in a system with fundamentally different wavefunctions from electrons. Finally our programme also depends on excellent crystal growth. We target one of the main issues limiting long term scale up of quantum dot technologies, namely site control. We will employ two approaches, which involve a combination of patterning, cleaning and crystal growth to define precisely the quantum dot location, both based around the formation of pits to seed growth in predetermined locations. Success here will be a major step in bringing semiconductor quantum optics into line with the position enjoyed by the majority of established semiconductor technologies where scalable lithographic processes have been a defining feature of their impact.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K031910/1
    Funder Contribution: 11,683,500 GBP

    The UK's healthcare system faces unprecedented challenges. We are the most obese nation in Europe and our ageing population is especially at risk from isolation, depression, strokes and fractures caused by falls in the home. UK health expenditure is already very substantial and it is difficult to imagine the NHS budget rising to meet the future needs of the UK's population. NHS staff are under particular pressure to reduce hospital bed-days by achieving earlier discharge after surgery. However this inevitably increases the risk that patients face post operative complications on returning home. Hospital readmission rates have in fact grown 20% since 1998. Many look to technology to mitigate these problems - in 2011 the Health Minister asserted that 80% of face-to-face interactions with the NHS are unnecessary. SPHERE envisages sensors, for example: 1) That employ video and motion analytics to predict falls and detect strokes so that help may be summoned. 2) That uses video sensing to analyse eating behaviour, including whether people are taking their prescribed medication. 3) That uses video to detect periods of depression or anxiety and intervene using a computer-based therapy. The SPHERE IRC will take a interdisciplinary approach to developing these sensor technologies, in order that: 1) They are acceptable in people's homes (this will be achieved by forming User Groups to assist in the technology design process, as well as experts in Ethics and User-Involvement who will explore issues of privacy and digital inclusion). 2) They solve real healthcare problems in a cost-effective way (this will be achieved by working with leading clinicians in Heart Surgery, Orthopaedics, Stroke and Parkinson's Disease, and recognised authorities on Depression and Obesity). 3) The IRC generates knowledge that will change clinical practice (this will be achieved by focusing on real-world technologies that can be shown working in a large number of local homes during the life of the project). The IRC "SPHERE" proposal has been developed from day one with clinicians, social workers and clinical scientists from internationally-recognised institutes including the Bristol Heart Institute, Southampton's Rehabilitation and Health Technologies Group, the NIHR Biomedical Research Unit in Nutrition, Diet and Lifestyle and the Orthopaedic Surgery Group at Southmead hospital in Bristol. This proposal further includes a local authority that is a UK leader in the field of "Smart Cities" (Bristol City Council), a local charity with an impressive track record of community-based technology pilots (Knowle West Media Centre) and a unique longitudinal study (the world-renowned Avon Longitudinal Study of Parents and Children (ALSPAC), a.k.a. "The Children of the Nineties"). SPHERE draws upon expertise from the UK's leading groups in Communications, Machine Vision, Cybernetics, Data Mining and Energy Harvesting, and from two corporations with world-class reputations for research and development (IBM, Toshiba).

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N021614/1
    Funder Contribution: 3,163,720 GBP

    Globally, national infrastructure is facing significant challenges: - Ageing assets: Much of the UK's existing infrastructure is old and no longer fit for purpose. In its State of the Nation Infrastructure 2014 report the Institution of Civil Engineers stated that none of the sectors analysed were "fit for the future" and only one sector was "adequate for now". The need to future-proof existing and new infrastructure is of paramount importance and has become a constant theme in industry documents, seminars, workshops and discussions. - Increased loading: Existing infrastructure is challenged by the need to increase load and usage - be that number of passengers carried, numbers of vehicles or volume of water used - and the requirement to maintain the existing infrastructure while operating at current capacity. - Changing climate: projections for increasing numbers and severity of extreme weather events mean that our infrastructure will need to be more resilient in the future. These challenges require innovation to address them. However, in the infrastructure and construction industries tight operating margins, industry segmentation and strong emphasis on safety and reliability create barriers to introducing innovation into industry practice. CSIC is an Innovation and Knowledge Centre funded by EPSRC and Innovate UK to help address this market failure, by translating world leading research into industry implementation, working with more than 40 industry partners to develop, trial, provide and deliver high-quality, low cost, accurate sensor technologies and predictive tools which enable new ways of monitoring how infrastructure behaves during construction and asset operation, providing a whole-life approach to achieving sustainability in an integrated way. It provides training and access for industry to source, develop and deliver these new approaches to stimulate business and encourage economic growth, improving the management of the nation's infrastructure and construction industry. Our collaborative approach, bringing together leaders from industry and academia, accelerates the commercial development of emerging technologies, and promotes knowledge transfer and industry implementation to shape the future of infrastructure. Phase 2 funding will enable CSIC to address specific challenges remaining to implementation of smart infrastructure solutions. Over the next five years, to overcome these barriers and create a self-sustaining market in smart infrastructure, CSIC along with an expanded group of industry and academic partners will: - Create the complete, innovative solutions that the sector needs by integrating the components of smart infrastructure into systems approaches, bringing together sensor data and asset management decisions to improve whole life management of assets and city scale infrastructure planning; spin-in technology where necessary, to allow demonstration of smart technology in an integrated manner. - Continue to build industry confidence by working closely with partners to demonstrate and deploy new smart infrastructure solutions on live infrastructure projects. Develop projects on behalf of industry using seed-funds to fund hardware and consumables, and demonstrate capability. - Generate a compelling business case for smart infrastructure solutions together with asset owners and government organisations based on combining smarter information with whole life value models for infrastructure assets. Focus on value-driven messaging around the whole system business case for why smart infrastructure is the future, and will strive to turn today's intangibles into business drivers for the future. - Facilitate the development and expansion of the supply chain through extending our network of partners in new areas, knowledge transfer, smart infrastructure standards and influencing policy.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.