Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Climate of the Past ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reconstruction of high resolution atmospheric fields for Northern Europe using analog-upscaling

Authors: Schenk, F.; Zorita, E.;

Reconstruction of high resolution atmospheric fields for Northern Europe using analog-upscaling

Abstract

The analog method (AM) has found application to reconstruct gridded climate fields from the information provided by proxy data and climate model simulations. Here, we test the skill of different setups of the AM, in a controlled but realistic situation, by analysing several statistical properties of reconstructed daily high-resolution atmospheric fields for Northern Europe for a 50-yr period. In this application, station observations of sea-level pressure and air temperature are combined with atmospheric fields from a 50-yr high-resolution regional climate simulation. This reconstruction aims at providing homogeneous and physically consistent atmospheric fields with daily resolution suitable to drive high resolution ocean and ecosystem models. Different settings of the AM are evaluated in this study for the period 1958–2007 to estimate the robustness of the reconstruction and its ability to replicate high and low-frequency variability, realistic probability distributions and extremes of different meteorological variables. It is shown that the AM can realistically reconstruct variables with a strong physical link to daily sea-level pressure on both a daily and monthly scale. However, to reconstruct low-frequency decadal and longer temperature variations, additional monthly mean station temperature as predictor is required. Our results suggest that the AM is a suitable upscaling tool to predict daily fields taken from regional climate simulations based on sparse historical station data.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Funded by
EC| BONUS+
Project
BONUS+
Multilateral call for research projects within the Joint Baltic Sea Research Programme BONUS+
  • Funder: European Commission (EC)
  • Project Code: 217246
  • Funding stream: FP7 | SP1 | GA
Related to Research communities
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.