research product . 2019

initMIP-Antarctica: An ice sheet model initialization experiment of ISMIP6

Seroussi, Hélène; Nowicki, Sophie; Simon, Erika; Abe-Ouchi, Ayako; Albrecht, Torsten; Brondex, Julien; Cornford, Stephen; Dumas, Christophe; Gillet-Chaulet, Fabien; Goelzer, Heiko; ...
Open Access English
  • Published: 14 May 2019
Abstract
Ice sheet numerical modeling is an important tool to estimate the dynamic contribution of the Antarctic ice sheet to sea level rise over the coming centuries. The influence of initial conditions on ice sheet model simulations, however, is still unclear. To better understand this influence, an initial state intercomparison exercise (initMIP) has been developed to compare, evaluate, and improve initialization procedures and estimate their impact on century-scale simulations. initMIP is the first set of experiments of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), which is the primary Coupled Model Intercomparison Project Phase 6 (CMIP6) activity focusing on the Greenland and Antarctic ice sheets. Following initMIP-Greenland, initMIP-Antarctica has been designed to explore uncertainties associated with model initialization and spin-up and to evaluate the impact of changes in external forcings. Starting from the state of the Antarctic ice sheet at the end of the initialization procedure, three forward experiments are each run for 100 years: a control run, a run with a surface mass balance anomaly, and a run with a basal melting anomaly beneath floating ice. This study presents the results of initMIP-Antarctica from 25 simulations performed by 16 international modeling groups. The submitted results use different initial conditions and initialization methods, as well as ice flow model parameters and reference external forcings. We find a good agreement among model responses to the surface mass balance anomaly but large variations in responses to the basal melting anomaly. These variations can be attributed to differences in the extent of ice shelves and their upstream tributaries, the numerical treatment of grounding line, and the initial ocean conditions applied, suggesting that ongoing efforts to better represent ice shelves in continental-scale models should continue.
Communities
  • European Marine Science Marine Environmental Science : North Atlantic Climate: Predictability of the climate in the North Atlantic/European sector related to North Atlantic/Arctic sea surface temperature and sea ice variability and change
Funded by
EC| ACCLIMATE
Project
ACCLIMATE
Elucidating the Causes and Effects of Atlantic Circulation Changes through Model-Data Integration
  • Funder: European Commission (EC)
  • Project Code: 339108
  • Funding stream: FP7 | SP2 | ERC
,
EC| NACLIM
Project
NACLIM
North Atlantic Climate: Predictability of the climate in the North Atlantic/European sector related to North Atlantic/Arctic sea surface temperature and sea ice variability and change
  • Funder: European Commission (EC)
  • Project Code: 308299
  • Funding stream: FP7 | SP1 | ENV
,
NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1852977
  • Funding stream: Directorate for Geosciences | Division of Atmospheric and Geospace Sciences
,
ANR| TROIS-AS
Project
TROIS-AS
Towards a Regional Ocean/ Ice Sheet / Atmosphere modeling System
  • Funder: French National Research Agency (ANR) (ANR)
  • Project Code: ANR-15-CE01-0005
,
NSF| Collaborative Research: Evaluating Retreat in the Amundsen Sea Embayment: Assessing Controlling Processes, Uncertainties, and Projections
Any information missing or wrong?Report an Issue