• shareshare
  • link
  • cite
  • add
Other research product . 2018

Yedoma Ice Complex of the Buor Khaya Peninsula (southern Laptev Sea)

Schirrmeister, Lutz; Schwamborn, Georg; Overduin, Pier Paul; Strauss, Jens; Fuchs, Margret C.; Grigoriev, Mikhail; Yakshina, Irina; +3 Authors
Open Access
Published: 27 Sep 2018
The composition of perennially frozen deposits holds information on the palaeo-environment during and following deposition. In this study, we investigate late Pleistocene permafrost at the western coast of the Buor Khaya Peninsula in the south-central Laptev Sea (Siberia), namely the prominent eastern Siberian Yedoma Ice Complex (IC). Two Yedoma IC exposures and one drill core were studied for cryolithological (i.e. ice and sediment features), geochemical, and geochronological parameters. Borehole temperatures were measured for 3 years to capture the current thermal state of permafrost. The studied sequences were composed of ice-oversaturated silts and fine-grained sands with considerable amounts of organic matter (0.2 to 24 wt %). Syngenetic ice wedges intersect the frozen deposits. The deposition of the Yedoma IC, as revealed by radiocarbon dates of sedimentary organic matter, took place between 54.1 and 30.1 kyr BP. Continued Yedoma IC deposition until about 14.7 kyr BP is shown by dates from organic matter preserved in ice-wedge ice. For the lowermost and oldest Yedoma IC part, infrared-stimulated luminescence dates on feldspar show deposition ages between 51.1 ± 4.9 and 44.2 ± 3.6 kyr BP. End-member modelling was applied to grain-size-distribution data to determined sedimentation processes during Yedoma IC formation. Three to five robust end-members were detected within Yedoma IC deposits, which we interpret as different modes of primary and reworked unconfined alluvial slope and fan deposition as well as of localized eolian and fluvial sediment, which is overprinted by in situ frost weathering. The cryolithological inventory of the Yedoma IC preserved on the Buor Khaya Peninsula is closely related to the results of other IC studies, for example, to the west on the Bykovsky Peninsula, where formation time (mainly during the late Pleistocene marine isotope stages (MIS) 3 interstadial) and formation conditions were similar. Local freezing conditions on Buor Khaya, however, differed and created solute-enriched (salty) and isotopically light pore water pointing to a small talik layer and thaw-bulb freezing after deposition. Due to intense coastal erosion, the biogeochemical signature of the studied Yedoma IC represents the terrestrial end-member, and is closely related to organic matter currently being deposited in the marine realm of the Laptev Sea shelf.
100 references, page 1 of 10

Aitken, M. J.: An Introduction to Optical Dating. The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence, xi C 267 pp., Oxford, New York, Tokyo: Oxford University Press, 1998.

Andreev, A., Grosse, G., Schirrmeister, L., Kuznetsova, T. V., Kuzmina, S. A., Bobrov, A. A., Tarasov, P. E., Novenko, E. Yu., Meyer, H., Derevyagin, A. Yu., Kienast, F., Bryantseva, A., and Kunitsky, V. V.: Weichselian and Holocene palaeoenvironmental history of the Bol'shoy Lyakhovsky Island, New Siberian Archipelago, Arctic Siberia, Boreas, 38, 72-110, doi:10.1111/j.1502-3885.2008.00039.x, 2009.

Andreev, A., Schirrmeister, L., Tarasov, P. E., Ganopolski, A., Brovkin, V., Siegert, C., Wetterich, S., and Hubberten, H.-W.: Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from poll records, Quaternary Sci. Rev., 30, 2182-2199, doi:10.1016/j.quascirev.2010.12.026, 2011.

Bischoff, J., Sparkes, R. B., Dogrul Selver, A., Spencer, R. G. M., Gustafsson, Ö., Semiletov, I. P., Dudarev, O. V., Wagner, D., Rivkina, E., van Dongen, B. E., and Talbot, H. M.: Source, transport and fate of soil organic matter inferred from microbial biomarker lipids on the East Siberian Arctic Shelf, Biogeosciences, 13, 4899-4914, doi:10.5194/bg-13-4899-2016, 2016.

Bobrov, A. A., Andreev, A. A., Schirrmeister, L., and Siegert, C.: Testate amoebae (Protozoa: Testacealobosea and Testaceafilosea) as bioindicators in the Late Quaternary deposits of the Bykovsky Peninsula, Laptev Sea, Russia, Palaeogeogr. Palaeocl., 209, 165-181, doi:10.1016/j.palaeo.2004.02.012, 2004. [OpenAIRE]

Bøtter-Jensen, L., Andersen, C. E., Duller, G. A. T., and Murray, A. S.: Developments in radiation, stimulation and observation facilities in luminescence measurements, Radiat. Meas., 37, 535- 541, 2003. [OpenAIRE]

Bray, M. T., French, H. M., and Shur, Y.: Further cryostratigraphic observations in the CRREL Permafrost Tunnel, Fox, Alaska, Permafrost Periglac., 17, 233-243, doi:10.1002/ppp.558, 2006.

Bröder, L., Tesi, T., Salvadó, J. A., Semiletov, I. P., Dudarev, O. V., and Gustafsson, Ö.: Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior, Biogeosciences, 13, 5003-5019, doi:10.5194/bg-13-5003-2016, 2016. [OpenAIRE]

CAVM Team: Circumpolar Arctic vegetation map (1:7,500,000 scale). Conservation of Arctic flora and fauna (CAFF), Map No. 1, U.S. Fish and Wildlife Service, Anchorage, Alaska, available at: (last access: 18 January 2016), 2003.

Chuvilin, E. M.: Migration of ions of chemical elements in freezing and frozen soils, Polar record, 35, 59-66, 1999.

Funded by
Rapid Permafrost Thaw in a Warming Arctic and Impacts on the Soil Organic Carbon Pool
  • Funder: European Commission (EC)
  • Project Code: 338335
  • Funding stream: FP7 | SP2 | ERC
Related to Research communities
European Marine Science
Download from