Actions
  • shareshare
  • link
  • cite
  • add
add
Other research product . 2019

Mineral formation induced by cable bacteria performing long-distance electron transport in marine sediments

Geerlings, Nicole M. J.; Zetsche, Eva-Maria; Hidalgo-Martinez, Silvia; Middelburg, Jack J.; Meysman, Filip J. R.;
Open Access
English
Published: 13 Feb 2019
Abstract

Cable bacteria are multicellular, filamentous microorganisms that are capable of transporting electrons over centimeter-scale distances. Although recently discovered, these bacteria appear to be widely present in the seafloor, and when active they exert a strong imprint on the local geochemistry. In particular, their electrogenic metabolism induces unusually strong pH excursions in aquatic sediments, which induces considerable mineral dissolution, and subsequent mineral reprecipitation. However, at present, it is unknown whether and how cable bacteria play an active or direct role in the mineral reprecipitation process. To this end we present an explorative study of the formation of sedimentary minerals in and near filamentous cable bacteria using a combined approach of electron microscopy and spectroscopic techniques. Our observations reveal the formation of polyphosphate granules within the cells and two different types of biomineral formation directly associated with multicellular filaments of these cable bacteria: (i) the attachment and incorporation of clay particles in a coating surrounding the bacteria and (ii) encrustation of the cell envelope by iron minerals. These findings suggest a complex interaction between cable bacteria and the surrounding sediment matrix, and a substantial imprint of the electrogenic metabolism on mineral diagenesis and sedimentary biogeochemical cycling. In particular, the encrustation process leaves many open questions for further research. For example, we hypothesize that the complete encrustation of filaments might create a diffusion barrier and negatively impact the metabolism of the cable bacteria.

73 references, page 1 of 8

Bassim, N. D., De Gregorio, B. T., Kilcoyne, A. L. D., Scott, K., Chou, T., Wirick, S., Cody, G., and Stroud, R. M.: Minimizing damage during FIB sample preparation of soft materials, J. Microsc., 245, 288-301, https://doi.org/10.1111/j.1365- 2818.2011.03570.x, 2012.

Benzerara, K., Menguy, N., Guyot, F., Skouri, F., de Luca, G., Barakat, M., and Heulin, T.: Biologically controlled precipitation of calcium phosphate by Ramlibacter tataouinensis, Earth Planet. Sc. Lett., 228, 439-449, https://doi.org/10.1016/j.epsl.2004.09.030, 2004.

Benzerara, K., Morin, G., Yoon, T. H., Miot, J., Tyliszczak, T., Casiot, C., Bruneel, O., Farges, F., and Brown, G. E.: Nanoscale study of As biomineralization in an acid mine drainage system, Geochim. Cosmochim. Ac., 72, 3949-3963, https://doi.org/10.1016/j.gca.2008.05.046, 2008. [OpenAIRE]

Benzerara, K., Miot, J., Morin, G., Ona-Nguema, G., Skouri-Panet, F., and Férard, C.: Significance, mechanisms and environmental implications of microbial biomineralization, C.R. Geosci., 343, 160-167, https://doi.org/10.1016/j.crte.2010.09.002, 2011.

Beveridge, T. J.: Structures of gram-negative cell walls and their derived membrane vesicles, J. Bacteriol., 181, 4725-4733, 1999.

Bjerg, J. T., Damgaard, L. R., Holm, S. A., Schramm, A., and Nielsen, L. P.: Motility of electric cable bacteria, Appl. Environ. Microbiol., 82, 3816-3821, https://doi.org/10.1128/AEM.01038-16, 2016. [OpenAIRE]

Brock, J. and Schulz-Vogt, H. N.: Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain, Int. Soc. Microb. Ecol. J., 5, 497-506, https://doi.org/10.1038/ismej.2010.135, 2011.

Brock, J., Rhiel, E., Beutler, M., Salman, V., and Schulz-Vogt, H. N.: Unusual polyphosphate inclusions observed in a marine Beggiatoa strain, Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol., 101, 347-357, https://doi.org/10.1007/s10482-011-9640-8, 2012. [OpenAIRE]

Burdorf, L. D. W., Tramper, A., Seitaj, D., Meire, L., HidalgoMartinez, S., Zetsche, E.-M., Boschker, H. T. S., and Meysman, F. J. R.: Long-distance electron transport occurs globally in marine sediments, Biogeosciences, 14, 683-701, https://doi.org/10.5194/bg-14-683-2017, 2017. [OpenAIRE]

Cornelissen, R., Bøggild, A., Eachambadi, R. T., Koning, R. I., Kremer, A., Hidalgo-martinez, S., Zetsche, E., Damgaard, L. R., Bonné, R., Drijkoningen, J., Geelhoed, J. S., Boesen, T., Boschker, H. T. S., Valcke, R., Nielsen, L. P., Haen, J. D., Manca, J. V., and Meysman, F. J. R.: The Cell Envelope Structure of Cable Bacteria, Front. Microbiol., 9, 1-13, https://doi.org/10.3389/fmicb.2018.03044, 2018.

Funded by
EC| BIPHA
Project
BIPHA
Bio-physical processes around marine snow aggregates
  • Funder: European Commission (EC)
  • Project Code: 660481
  • Funding stream: H2020 | MSCA-IF-EF-ST
,
NWO| The impact of cable bacteria on the sediment geochemistry in hypoxic systems
Project
  • Funder: Netherlands Organisation for Scientific Research (NWO) (NWO)
  • Project Code: 2300189430
,
EC| SEDBIOGEOCHEM2.0
Project
SEDBIOGEOCHEM2.0
Hardwiring the ocean floor: the impact of microbial electrical circuitry on biogeochemical cycling in marine sediments
  • Funder: European Commission (EC)
  • Project Code: 306933
  • Funding stream: FP7 | SP2 | ERC
Related to Research communities
European Marine Science Marine Environmental Science : Bio-physical processes around marine snow aggregates
Download from
moresidebar