Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brunel University Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of subpopulations of cells with differing telomere lengths in mouse and human cell lines by flow FISH

Authors: Newbold, R F; Cabury, E; Newton, C; Roberts, T; Slijepcevic, P;

Identification of subpopulations of cells with differing telomere lengths in mouse and human cell lines by flow FISH

Abstract

BACKGROUND: Telomeres are specialized nucleoprotein structures at chromosome ends that undergo dynamic changes after each cell cycle. Understanding the mechanisms of telomere dynamics is critically dependent on the ability to accurately measure telomere length in a cell population of interest. Techniques such as Southern blot, which measures average telomere length, and quantitative fluorescence in situ hybridization (Q-FISH), which can estimate telomere length in individual chromosomes, are limited in their capacity to determine the distribution of cells with differing telomere lengths in a given cell population. METHODS: We employed flow-FISH to determine whether mouse and human cell lines exhibit subpopulations of cells with differing telomere lengths. RESULTS: Our analysis showed that at least one of four analyzed mouse cell lines had two subpopulations of cells with differing telomere lengths. Differences in telomere length between subpopulations of cells were significant, and we term this phenomenon TELEFLUCS (TElomere LEngth FLUctuations in Cell Subpopulations). We also observed TELEFLUCS in 1 of 19 analyzed human nonalternative lengthening of telomere cell lines and in 1 of 2 analyzed human alternative lengthening of telomere cell lines. The existence of cell subpopulations with differing telomere lengths was confirmed by Q-FISH. CONCLUSION: Our results underscore the importance of flow-FISH in telomere length analysis. 2004 Wiley-Liss, Inc.

Country
United Kingdom
Related Organizations
Keywords

FISH, Human cell lines, Mouse cell lines, Telomere

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
European Marine Science
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.