Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Changes in South Atlantic oxygenation, surface temperature and circulation dynamics during termination II and MIS 6 (proxy analyses in sediment core MD07-3077)

Authors: Gottschalk, Julia; Skinner, Luke C; Jaccard, Samuel L; Waelbroeck, Claire;

Changes in South Atlantic oxygenation, surface temperature and circulation dynamics during termination II and MIS 6 (proxy analyses in sediment core MD07-3077)

Abstract

Past millennial-scale changes in atmospheric CO2 (CO2,atm) levels have often been attributed to variations in the overturning timescale of the ocean that result in changes in the marine carbon inventory. There remains a paucity of proxy evidence that documents changes in marine carbon storage globally, and that links them to distinct abrupt climate variability in the northern hemi-sphere that involve perturbations of the Atlantic Meridional Overturning Circulation (AMOC). The last two glacial periods were suggested to differ in the extent and sensitivity of the AMOC to changes, and therefore provide an opportunity to study their role in marine carbon cycling. Here, we reconstruct variations in respired carbon storage (via oxygenation) and the AMOC 'geometry' (via carbonate ion saturation) in the deep South Atlantic during the past two glacial periods. We infer decreases in deep South Atlantic respired carbon levels at times of weakened AMOC and rising CO2,atm concentrations during both glacial periods. These findings suggest a consistent pat-tern of increased Southern Ocean convection and/or air-sea CO2 fluxes during northern-hemisphere stadials accompanying AMOC perturbations and promoting a rise in CO2,atm levels, despite potential differences in the magnitude of the forcing, the climate (and hence, AMOC) background conditions and the rate of ocean-atmospheric CO2 fluxes. We find that net ocean car-bon loss, and hence the magnitude of CO2,atm rise, during a glacial is largely determined by the stadial duration. North Atlantic climate anomalies may therefore significantly affect Southern Ocean carbon cycling through oceanic (e.g., 'ventilation' seesaw) and/or atmospheric processes (e.g., Ekman pumping).

Keywords

Glacials, Interstadials, Stadials, paleoclimatology, Redox-sensitive elements, Carbon cycle, Foraminifera, Marion Dufresne (1995), Calypso Corer II, Dansgaard-Oeschger cycles, Southern Ocean, Atmospheric CO2 variations, MD159

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Funded by
UKRI| The bi-polar seesaw and CO2: Is there anything special about 'Terminal seesaw events'?
Project
  • Funder: UK Research and Innovation (UKRI)
  • Project Code: NE/J010545/1
  • Funding stream: NERC
,
EC| ACCLIMATE
Project
ACCLIMATE
Elucidating the Causes and Effects of Atlantic Circulation Changes through Model-Data Integration
  • Funder: European Commission (EC)
  • Project Code: 339108
  • Funding stream: FP7 | SP2 | ERC
result:project:semrel
,
ARC| Discovery Early Career Researcher Award - Grant ID: DE150100107
Project
  • Funder: Australian Research Council (ARC) (ARC)
  • Project Code: DE150100107
  • Funding stream: Discovery Early Career Researcher Award
result:project:semrel
,
SNSF| SeaO2 - Past changes in Southern Ocean overturning circulation - implications for the partitioning of carbon and oxygen between the ocean and the atmosphere
Project
  • Funder: Swiss National Science Foundation (SNSF)
  • Project Code: 144811
  • Funding stream: Careers | SNSF Professorships
result:project:semrel
Related to Research communities
European Marine Science
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.