shareshare link cite add Please grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Svalbard summer 2016 fjord sediment sulfide oxidation and iron reactivity study, supplement to: Michaud, Alexander B; Laufer, Katja; Findlay, Alyssa; Pellerin, Andre; Antler, Gilad; Turchyn, Alexandra V; Røy, Hans; Wehrmann, Laura Mariana; Jørgensen, Bo Barker (2020): Glacial influence on the iron and sulfur cycles in Arctic fjord sediments (Svalbard). Geochimica et Cosmochimica Acta
In the summer of 2016, we collected sediment cores from three fjords (Smeerenburgfjorden, stn. J; Kongsfjorden, stn. P; and Van Keulenfjorden, stn. AC). These cores were both long cores (~80 cm) and short (~25 cm) where we conducted porewater geochemistry and incubation experiments to quantify the rate of sulfide oxidation and changes to the reactive Fe(III)-oxide pool over time. All coordinates of sampling sites are in the data file. The methods are included in the manuscript doi:10.1016/j.gca.2019.12.033.
biogeochemistry, fjord, glacier, iron reactivity, sediment, sulfide oxidation, Svalbard
biogeochemistry, fjord, glacier, iron reactivity, sediment, sulfide oxidation, Svalbard
4 Research products, page 1 of 1
- 2020 . IsSupplementTo
- Funder: European Commission (EC)
- Project Code: 294200
- Funding stream: FP7 | SP2 | ERC
In the summer of 2016, we collected sediment cores from three fjords (Smeerenburgfjorden, stn. J; Kongsfjorden, stn. P; and Van Keulenfjorden, stn. AC). These cores were both long cores (~80 cm) and short (~25 cm) where we conducted porewater geochemistry and incubation experiments to quantify the rate of sulfide oxidation and changes to the reactive Fe(III)-oxide pool over time. All coordinates of sampling sites are in the data file. The methods are included in the manuscript doi:10.1016/j.gca.2019.12.033.