Actions
  • shareshare
  • link
  • cite
  • add
Powered by OpenAIRE graph
Found an issue? Give us feedback
add
Other research product . Collection . 2018

Freeze/thaw ground displacement in the Lena River Delta, 2013-2017: TerraSAR-X DInSAR displacement map and in-situ measurements

Antonova, Sofia; Sudhaus, Henriette; Strozzi, Tazio; Zwieback, Simon; Kääb, Andreas; Heim, Birgit; Langer, Moritz; +2 Authors
Open Access
English
Published: 01 Jan 2018
Publisher: PANGAEA
Abstract

In permafrost areas, seasonal freeze-thaw cycles result in upward and downward movements of the ground. For some permafrost areas, long-term downward movements were reported during the last decade. We measured seasonal and multi-year ground movements in a yedoma region of the Lena River Delta, Siberia, in 2013–2017, using reference rods installed deep in the permafrost. The seasonal subsidence was 1.7 ± 1.5 cm in the cold summer of 2013 and 4.8 ± 2 cm in the warm summer of 2014. Furthermore, we measured a pronounced multi-year net subsidence of 9.3 ± 5.7 cm from spring 2013 to the end of summer 2017. Importantly, we observed a high spatial variability of subsidence of up to 6 cm across a sub-meter horizontal scale. In summer 2013, we accompanied our field measurements with Differential Synthetic Aperture Radar Interferometry (DInSAR) on repeat-pass TerraSAR-X (TSX) data from the summer of 2013 to detect summer thaw subsidence over the same study area. Interferometry was strongly affected by a fast phase coherence loss, atmospheric artifacts, and possibly the choice of reference point. A cumulative ground movement map, built from a continuous interferogram stack, did not reveal a subsidence on the upland but showed a distinct subsidence of up to 2 cm in most of the thermokarst basins. There, the spatial pattern of DInSAR-measured subsidence corresponded well with relative surface wetness identified with the near infra-red band of a high-resolution optical image. Our study suggests that (i) although X-band SAR has serious limitations for ground movement monitoring in permafrost landscapes, it can provide valuable information for specific environments like thermokarst basins, and (ii) due to the high sub-pixel spatial variability of ground movements, a validation scheme needs to be developed and implemented for future DInSAR studies in permafrost environments.

Subjects

Permafrost Research (AWI_Perma), Permafrost Research (Periglacial Dynamics) @ AWI (AWI_PerDyn), Polar Terrestrial Environmental Systems @ AWI (AWI_Envi)

Powered by OpenAIRE graph
Found an issue? Give us feedback
Funded by
EC| ICEMASS
Project
ICEMASS
Global Glacier Mass Continuity
  • Funder: European Commission (EC)
  • Project Code: 320816
  • Funding stream: FP7 | SP2 | ERC
,
NSF| The Polar Geospatial Information Center: Joint Support
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1043681
  • Funding stream: Directorate for Geosciences | Division of Polar Programs
,
NSF| Automated, High Resolution Terrain Generation for XSEDE
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1542736
Related to Research communities
European Marine Science
moresidebar