Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ OceanBestPractices :...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Conceptual Framework for Developing the Next Generation of Marine OBservatories (MOBs) for Science and Society.

Authors: Crise, Alessandro; Ribera d’Alcalà, Maurizio; Mariani, Patrizio; Petihakis, George; Robidart, Julie; Iudicone, Daniele; Bachmayer, Ralf; +1 Authors

Conceptual Framework for Developing the Next Generation of Marine OBservatories (MOBs) for Science and Society.

Abstract

In the field of ocean observing, the term of “observatory” is often used without a unique meaning. A clear and unified definition of observatory is needed in order to facilitate the communication in a multidisciplinary community, to capitalize on future technological innovations and to support the observatory design based on societal needs. In this paper, we present a general framework to define the next generation Marine OBservatory (MOB), its capabilities and functionalities in an operational context. The MOB consists of four interconnected components or “gears” (observation infrastructure, cyberinfrastructure, support capacity, and knowledge generation engine) that are constantly and adaptively interacting with each other. Therefore, a MOB is a complex infrastructure focused on a specific geographic area with the primary scope to generate knowledge via data synthesis and thereby addressing scientific, societal, or economic challenges. Long-term sustainability is a key MOB feature that should be guaranteed through an appropriate governance. MOBs should be open to innovations and good practices to reduce operational costs and to allow their development in quality and quantity. A deeper biological understanding of the marine ecosystem should be reached with the proliferation of MOBs, thus contributing to effective conservation of ecosystems and management of human activities in the oceans. We provide an actionable model for the upgrade and development of sustained marine observatories producing knowledge to support science-based economic and societal decisions. Refereed 14.A Manual (incl. handbook, guide, cookbook etc) 2018-09-07

Keywords

Marine OBservatory, Essential ocean variables (EOV), Global Ocean Observing System (GOOS), :Cross-discipline [Parameter Discipline], Long-term sustainability, Cyberinfrastructure

40 references, page 1 of 4

Atkinson, M., Baxter, R., Brezany, P., Corcho, O., Galea, M., Parsons, M. (eds). et al. (2013). The Data Bonanza: Improving Knowledge Discovery in Science, Engineering, and Business, Vol. 90. Hoboken, NJ: John Wiley & Sons. doi: 10.1002/9781118540343

Barnes, C. R., Best, M. M., and Zielinski, A. (2008). The Neptune Canada regional cabled ocean observatory. Technology 49, 10-14.

Bermudez, L., Delory, E., O'Reilly, T., and del Rio Fernandez, J. (2009). “Ocean observing systems demystified,” in Proceedings of the OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges, (Piscataway, NJ: IEEE).

Brosnahan, M. L., Farzan, S., Keafer, B. A., Sosik, H. M., Olson, R. J., and Anderson, D. M. (2014). Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes. Deep Sea Res. Part II 103, 185-198. doi: 10.1016/j.dsr2.2013.05.034 [OpenAIRE]

Buttigieg, P. L., Fadeev, E., Bienhold, C., Hehemann, L., Offre, P., and Boetius, A. (2018). Marine microbes in 4D-using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr. Opin. Microbiol. 43, 169-185. doi: 10.1016/j.mib.2018. 01.015 [OpenAIRE]

Campbell, L., Henrichs, D. W., Olson, R. J., and Sosik, H. M. (2013). Continuous automated imaging-in-flow cytometry for detection and early warning of Karenia brevis blooms in the Gulf of Mexico. Environ. Sci. Pollut. Res. 20, 6896-6902. doi: 10.1007/s11356-012-1437-4

Campbell, L., Olson, R. J., Sosik, H. M., Abraham, A., Henrichs, D. W., Hyatt, C. J., et al. (2010). First harmful Dinophysis (Dinophyceae, Dinophysiales) bloom in the US is revealed by automated imaging flow cytometry. J. Phycol. 46, 66-75. doi: 10.1111/j.1529-8817.2009.00791.x

Carpenter, S., and Cannady, J. (2004). “Tool for sharing and assessing models of fusion-based space transportation systems,” in Proccedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, New York, NY. doi: 10.2514/6.2004-3535

Chafik, L., Rossby, T., and Schrum, C. (2014). On the spatial structure and temporal variability of poleward transport between Scotland and Greenland. J. Geophys. Res. Oceans 119, 824-841. doi: 10.1002/2013 JC009287 [OpenAIRE]

Crise, A., Kaberi, H., Ruiz, J., Zatsepin, A., Arashkevich, E., Giani, M., et al. (2015). A MSFD complementary approach for the assessment of pressures, knowledge and data gaps in Southern European Seas: the perseus experience. Mar. Pollut. Bull. 95, 28-39. doi: 10.1016/j.marpolbul.2015. 03.024 [OpenAIRE]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Funded by
UKRI| Development and application of eDNA tools to assess the structure and function of coastal sea ecosystems (MARINe-DNA)
Project
  • Funder: UK Research and Innovation (UKRI)
  • Project Code: NE/N006496/1
  • Funding stream: NERC
,
EC| EMSO-Link
Project
EMSO-Link
Implementation of the Strategy to Ensure the EMSO ERIC’s Long-term Sustainability
  • Funder: European Commission (EC)
  • Project Code: 731036
  • Funding stream: H2020 | CSA
iis
,
EC| JERICO-NEXT
Project
JERICO-NEXT
Joint European Research Infrastructure network for Coastal Observatory – Novel European eXpertise for coastal observaTories
  • Funder: European Commission (EC)
  • Project Code: 654410
  • Funding stream: H2020 | RIA
iis
,
EC| AtlantOS
Project
AtlantOS
Optimizing and Enhancing the Integrated Atlantic Ocean Observing System
  • Funder: European Commission (EC)
  • Project Code: 633211
  • Funding stream: H2020 | RIA
iis
Related to Research communities
European Marine Science Marine Environmental Science : Optimizing and Enhancing the Integrated Atlantic Ocean Observing System
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.