
Loading
The main goal of the 3D-PRESS project is to advance in the 3D printing concepts for safer, cheaper and customizable all-solid state Li-ion batteries (LIB). More specifically, the project is focused on the design, production, characterization and testing of 3D printed NASICON-type glass-based electrolytes for 3D printed batteries. In 3D-PRESS, glass-based compositions will be designed and synthesized in order to obtain printable glass-based electrolytes with superior conductivity and functional properties. The produced glasses will be thermally and electrochemically characterized in order to investigate their sinter-crystallization behaviour (tailoring suitable sintering treatments) and electrochemical performances. The most promising electrolyte compositions will be selected to be printed in free-form robust self-standing structures in order to obtain 3D batteries with high active area (allowing high specific energy and power per unit volume). 3D-PRESS represents a cutting edge multidisciplinary approach for the development of reliable and customizable all-solid state 3D LIBs, especially interesting for micro-power applications such as the ones for Internet of Things (IoT). The project will provide a new family of printable materials increasing the short list of available compositions, especially solid electrolytes, opening the door to the development of a new generation of fully printable all-solid state 3D LIBs. A high impact on the future career of the candidate is expected by complementing his current background with new skills in one of the more relevant Key Enabling Technologies (KETs), 3D-printing, applied to the crucial field of the Energy Storage. Moreover, the host institute will offer unique opportunities to re-enforce the technology transfer competences of the candidate by carrying out an industrial secondment and by the involvement in the KIC Innoenergy community.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c2c415487ac9dab30fb91fee546a5000&type=result"></script>');
-->
</script>