Powered by OpenAIRE graph
Found an issue? Give us feedback

3D-PRESS

3D-PRintable glass-based Electrolytes for all-Solid-State lithium batteries
Funder: European CommissionProject code: 841937 Call for proposal: H2020-MSCA-IF-2018
Funded under: H2020 | MSCA-IF-EF-ST Overall Budget: 160,932 EURFunder Contribution: 160,932 EUR
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
5
3
Description

The main goal of the 3D-PRESS project is to advance in the 3D printing concepts for safer, cheaper and customizable all-solid state Li-ion batteries (LIB). More specifically, the project is focused on the design, production, characterization and testing of 3D printed NASICON-type glass-based electrolytes for 3D printed batteries. In 3D-PRESS, glass-based compositions will be designed and synthesized in order to obtain printable glass-based electrolytes with superior conductivity and functional properties. The produced glasses will be thermally and electrochemically characterized in order to investigate their sinter-crystallization behaviour (tailoring suitable sintering treatments) and electrochemical performances. The most promising electrolyte compositions will be selected to be printed in free-form robust self-standing structures in order to obtain 3D batteries with high active area (allowing high specific energy and power per unit volume). 3D-PRESS represents a cutting edge multidisciplinary approach for the development of reliable and customizable all-solid state 3D LIBs, especially interesting for micro-power applications such as the ones for Internet of Things (IoT). The project will provide a new family of printable materials increasing the short list of available compositions, especially solid electrolytes, opening the door to the development of a new generation of fully printable all-solid state 3D LIBs. A high impact on the future career of the candidate is expected by complementing his current background with new skills in one of the more relevant Key Enabling Technologies (KETs), 3D-printing, applied to the crucial field of the Energy Storage. Moreover, the host institute will offer unique opportunities to re-enforce the technology transfer competences of the candidate by carrying out an industrial secondment and by the involvement in the KIC Innoenergy community.

Partners
Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 5
    download downloads 3
  • 5
    views
    3
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c2c415487ac9dab30fb91fee546a5000&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down