Powered by OpenAIRE graph
Found an issue? Give us feedback

N2B-patch

Nose to Brain Delivery of Antibodies via the Olfactory Region for the Treatment of Multiple Sclerosis Using Novel Multi-functional Biomaterials Combined with a Medical Device
Funder: European CommissionProject code: 721098 Call for proposal: H2020-NMBP-2016-two-stage
Funded under: H2020 | RIA Overall Budget: 6,473,000 EURFunder Contribution: 5,325,500 EUR
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
3
12
Description

The overall aim of N2B-patch is the development of a new innovative N2B drug delivery technology based on the synthesis of a biomaterial-based innovative galenic formulation that will be applied with the aid of a novel medical device equipped with a container closure system (CCS) as a hydrogel patch to the nasal olfactory region for the chronic treatment of MS. The galenic formulation will consist of drug loaded biodegradable polymer particles (e.g., chitosan, polylactic-co-glycolic acid, PLGA) embedded into a biodegradable hydrogel matrix (e.g., hyaluronic acid (HA)-based) to be deposited as a patch onto the olfactory region. A pH-sensitive, mucoadhesive particle coating (e.g., chitosan, chitosan derivatives) will ensure an environment-specific adhesion to the olfactory epithelium. This novel technology will largely enhance the controlled and sustainable delivery of drugs and increase the drug bioavailabilty to the CNS. NogoA antagonist NG-101 will be used as an active pharmaceutical ingredient (API). Proof of concept studies and initial clinical data have proven the enormous potential of blocking NogoA for spinal cord remyelation and axonal integrity. However, monoclonal antibodies (mAb) like NG-101, do not sufficiently cross the BBB. The sustainable and controlled release of NG-101 to the CNS will be achieved via the transport of embedded polymer particles to the olfactory epithelium, the subsequent release of API and permeation through the olfactory region, the only part of the nasal epithelium which is in direct contact with the brain. The direct transport route from the nasal cavity to the brain, bypassing the BBB, offers an exciting mode of central nervous system (CNS) drug delivery not only for demyelinating disorders but also for other CNS indications, e.g., stroke, neurodegenerative diseases or tumours. The proposed new innovative N2B drug delivery platform is a practical, safe, and minimally invasive technology. It will be exploited for NG-101 and has the potential to be implemented with other APIs with a low CNS bioavailability.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 12
  • 3
    views
    12
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::e617a3bee5f6e5f8bb3386cc69b59a94&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down