Powered by OpenAIRE graph
Found an issue? Give us feedback

Quantum Technology Capital: Quantum Photonic Integrated Circuits (QuPIC)

Funder: UK Research and InnovationProject code: EP/N015126/1
Funded under: EPSRC Funder Contribution: 4,574,890 GBP
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
271
214

Quantum Technology Capital: Quantum Photonic Integrated Circuits (QuPIC)

Description

We will establish a UK quantum device prototyping service, focusing on design, manufacture, test, packaging and rapid device prototyping of quantum photonic devices. QuPIC will provide academia and industry with an affordable route to quantum photonic device fabrication through commercial-grade fabrication foundries and access to supporting infrastructure. QuPIC will provide qualified design tools tailored to each foundry's fabrication processes, multiproject wafer access, test and measurement, and systems integration facilities, along with device prototyping capabilities. The aim is to enable greater capability amongst quantum technology orientated users by allowing adopters of quantum photonic technologies to realise advanced integrated quantum photonic devices, and to do so without requiring in-depth knowledge. We will bring together an experienced team of engineers and scientists to provide the required breadth of expertise to support and deliver this service. Four work packages deliver the QuPIC service. They are: WP1 - Design tools for photonic simulation and design software, thermal and mechanical design packages and modelling WP2 - Wafer fabrication - Establishing the qualified component library for the different fabrication processes and materials and offering users a multi-project wafer service WP3 - Integrated device test and measurement - Automated wafer scale electrical and optical characterisation, alignment systems, cryogenic systems to support single-photon detector integration) WP4 - Packaging and prototyping - Tools for subsystem integration into hybrid and functionalised quantum photonic systems and the rapid prototyping of novel, candidate component designs before wafer-scale manufacturing and testing The design tools (WP1) will provide all the core functionality and component libraries to allow users to design quantum circuits, for a range of applications. We will work closely with fabrication foundries (WP2) to qualify the design libraries and to provide affordable access to high-quality devices via a multi-project wafer approach, where many users share the fabrications costs. Specialist test and measurement facilities (WP3) will provide rapid device characterization (at the wafer level), whilst packaging and prototyping tools (WP4) will allow the assembly of subsystems into highly functionalised quantum photonic systems.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 271
    download downloads 214
  • 271
    views
    214
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0dd70f70426829217ec24273cee35b0d&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down